首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
本文通过将不同填充量的纳米ZnO、SiO2填充环氧树脂制备成复合材料,研究纳米无机粒子填充对复合材料绝缘特性的影响.首先利用扫描电镜检测了纳米颗粒在复合材料中的分布状况,测试了纳米ZnO、SiO2不同添加量与复合材料介电常数的关系及对复合材料局部放电起始电压的影响,同时分析了复合材料电老化过程中电树枝引发率的变化规律和纳米颗粒填充量对复合材料的导热系数的影响.研究结果表明,纳米ZnO填充量的增加会引起环氧树脂相对介电常数的增大,而纳米SiO2填充环氧树脂后,复合材料的相对介电常数先降低然后缓慢增加.纳米ZnO与SiO2均能提高复合材料的局放起始电压、降低复合材料的电树枝引发率及提高复合材料的导热系数.  相似文献   

2.
为了满足不断提高的电压等级以及复杂的运行环境,在环氧树脂绝缘材料中加入无机纳米粒子,以提高其沿面闪络性能,保证设备安全运行。将纳米SiO_2粒子与环氧树脂复合制备了纳米SiO_2/环氧树脂复合材料,研究了纳米SiO_2粒径、含量及偶联剂改性对复合材料介电常数、直流闪络电压的影响。结果表明:复合材料的介电常数随SiO_2粒径的减小先减小后增大,随SiO_2质量分数的增加先减小后增大;纳米SiO_2经过硅烷偶联剂改性后可以明显地减小复合材料的介电常数;纳米SiO_2的粒径、含量及偶联剂改性对复合材料闪络电压的影响与介电常数相反。  相似文献   

3.
以纳米SiO_2改性环氧树脂制得SiO_2/环氧树脂复合材料,并对改性前后环氧树脂复合材料的短时过电压耐受能力进行对比研究。结果表明:随着纳米SiO_2掺杂量的增加,SiO_2/环氧树脂复合材料的介电常数和介质损耗因数均呈先减小后增大的趋势,当纳米SiO_2质量分数为3%时,改性效果最佳。根据U-N曲线,在常温下施加的雷电冲击电压幅值为50 k V时,掺杂SiO_2质量分数为3%的环氧树脂复合材料累积至击穿的雷电冲击次数达1 313次,是纯环氧树脂材料的3.23倍,研究结果可为提高环氧树脂短时过电压耐受能力设计提供参考。  相似文献   

4.
为研究纳米颗粒对环氧树脂(epoxy resin,ER)介电和空间电荷特性的影响,以环氧树脂为基体材料,纳米二氧化硅(silicon dioxide,SiO_2)为填料,制备了SiO_2纳米颗粒质量分数在0~5%范围内的ER/SiO_2纳米复合电介质。测试和研究了复合电介质在不同频率下的介电特性和直流场强为33 k V/mm下的空间电荷行为。当SiO_2纳米颗粒的质量分数为0.5%和1%时,复合电介质可以获得较低的介电常数和介质损耗,同时有效抑制了同极性空间电荷在电极界面处的积累及注入;当SiO_2纳米颗粒的质量分数为2.5%和5%时,复合电介质在低频区域介电常数和介质损耗均比纯环氧树脂高,但在高频区域变化不明显,同时在电极界面处的空间电荷积累显著增加、注入明显。研究结果表明:纳米颗粒含量较低时ER/SiO_2复合电介质介电和空间电荷性能得到提高,是由于受到环氧树脂基体和纳米粒子之间的界面区影响,界面区是改善环氧树脂纳米复合材料电性能的关键因素。  相似文献   

5.
为改善纳米SiO_2与环氧树脂(EP)的界面性能及复合材料的介电参数,通过超支化聚酯协同偶联剂处理对纳米SiO_(2.)进行表面接枝,制备不同配比的纳米SiO_2/EP复合材料,研究不同改性方式及SiO_2含量下复合材料的介电特性。X射线光电子能谱及傅里叶红外光谱分析表明,端羧基超支化聚酯经100℃、40 min共混反应可成功接枝至纳米SiO_2表面;材料断面扫描电镜分析表明,质量分数为10%掺杂时,经超支化表面接枝改性的纳米SiO_2在EP溶液中不易团聚;热刺激去极化电流测试表明,纳米复合材料内部出现0.86~1.15 eV深陷阱;质量分数为7%掺杂比例下,复合材料的交流击穿电场强度比单纯偶联剂改性方式提高了19%;质量分数为5%掺杂比例下,工频下材料的介质损耗因数和介电常数分别下降至0.58%和4.38;研究结果表明超支化聚酯处理可在纳米SiO_2表面引入超支化基团。长链自由基的引入可抑制纳米SiO_2团聚,增强无机粒子与环氧基团的结合强度,并在纳米SiO_2/EP界面区域引入深陷阱,进而显著改善复合材料的介电特性。  相似文献   

6.
为研究纳米二氧化硅掺杂环氧树脂的局部放电起始电压及导热性,制备了不同纳米粒子含量的纳米二氧化硅/环氧树脂复合材料试样,测试其局部放电起始电压和热导率。结果表明:在纳米粒子含量为5%时,纳米二氧化硅/环氧树脂复合材料的局部放电起始电压达到最大值,较纯环氧树脂提高了22.5%;复合材料热导率达到最大值,较纯环氧树脂提高了157%。通过对试样的微观结构分析可知,掺杂纳米粒子可以抑制复合材料内部缺陷的产生。  相似文献   

7.
在甲苯溶剂中通过预先接枝在SiO_2粒子上的硅烷偶联剂二次接枝环氧链段的方法,制备了接枝环氧链段的SiO_2粒子。采用不同偶联剂处理方式制备了3种SiO_2添加量为1份的SiO_2/环氧树脂纳米复合材料,对纳米粒子进行了红外光谱(FT-IR)、热重分析(TGA)和透射电镜(TEM)表征,测试了复合材料的热力学性能及介电性能。结果表明:偶联剂可起到桥接作用,将环氧链段接枝到SiO_2粒子上,改善了纳米粒子的团聚现象。接枝后的SiO_2粒子表面与树脂基体有良好的相容性。接枝改性后的SiO_2/环氧树脂复合材料的储能模量大幅提高,冲击强度提高了11.9%,玻璃化转变温度变化不大,SiO_2对复合材料的复介电常数实部和虚部有不同程度的影响。相比不使用偶联剂或直接在复合体系中添加偶联剂的方法,通过偶联剂在SiO_2粒子表面接枝环氧树脂能有效降低复合材料复介电常数的实部和虚部。  相似文献   

8.
气体绝缘管道输电和气体绝缘组合电器运行过程中盆式绝缘子表面电荷的积累与消散特性对其绝缘破坏具有重要影响,通过纳米颗粒调控环氧树脂表面电荷的动态行为及其闪络特性对提高其安全运行具有重要意义。制备了质量分数为0%、2%、4%、6%和8%的环氧树脂/SiO_2纳米复合材料,获得了其在正、负直流电压作用下表面电位衰减特性、陷阱分布特性及其闪络击穿特性,并建立了基于陷阱调控的闪络击穿失效物理模型。结果表明:正、负电晕充电条件下,SiO_2纳米颗粒均导致环氧树脂表面电位衰减速度减小,纳米质量分数为4%时达到最小值; SiO_2纳米颗粒引入了新的空穴陷阱和电子陷阱,深陷阱能级和陷阱密度均增加,纳米质量分数为4%时达到最大值; SiO_2纳米颗粒提高了环氧树脂的闪络电压,质量分数为4%的纳米复合材料与纯环氧树脂相比,正、负直流电压下闪络电压分别提升了58. 04%和64. 15%。  相似文献   

9.
针对直流气体绝缘金属封闭开关设备(GIS)盆式绝缘子表面电荷积累与沿面闪络的问题,制备了不同Si C质量分数的环氧树脂非线性电导复合材料,研究了Si C含量对Si C/环氧树脂非线性电导复合材料的体电导率、表面电荷、沿面闪络电压等相关特性的影响。结果表明:Si C质量分数大于50%的环氧树脂复合材料试样在高电场下呈现非线性电导特性。随着Si C含量和外加直流电场强度的增加,Si C/环氧树脂复合材料的表面电位增加量明显下降。Si C质量分数大于50%的环氧树脂复合材料在高电场下对其表面电荷积累具有抑制作用,减少了沿面闪络现象的发生。  相似文献   

10.
利用脂环族环氧树脂S186共混改性双酚A环氧树脂,然后掺杂纳米SiO_2制备复合材料,对共混体系和纳米改性共混体系进行介电常数与直流闪络电压测试。结果表明:脂环族环氧树脂S186的加入可以降低复合材料的介电常数,提高直流闪络电压。复合材料的直流闪络电压随纳米SiO_2粒径的减小先升高后降低,随纳米SiO_2掺杂量的增加先升高后降低,加入脂环族环氧树脂S186使闪络电压进一步提升,但其随填料的变化趋势不变;复合材料介电常数的变化趋势与闪络电压相反。  相似文献   

11.
气-固界面的沿面闪络电压低于同等条件下同种气体的击穿电压,从而制约着特高压电力设备的发展。对固体绝缘材料进行改性可以提高气-固绝缘系统的沿面闪络性能。为此,制备了8种不同的多壁碳纳米管(MWCNTS)掺杂环氧树脂,即掺杂质量分数分别为0%、0.02%、0.05%、0.1%、0.125%、0.15%、0.2%和0.5%的8种试样,并对试样进行了显微形貌、玻璃化转变温度、介电常数、表面粗糙度、电阻率、表面电位衰减特性(SPD)、直流真空沿面闪络特性的测试。试验结果表明:随着掺杂质量分数的提高,环氧复合材料的沿面闪络电压先上升后下降,并且在掺杂质量分数为0.1%时达到极大值,环氧复合材料的闪络电压比纯环氧树脂的提升了23.1%。通过分析发现,掺杂质量分数较低时,沿面闪络电压的上升与陷阱深度的增加及介电常数的下降有关;而掺杂质量分数较高时,沿面闪络的下降与浅陷阱密度的增加及介电常数上升有关。通过分析得到,介电常数会引起电场畸变,陷阱的深度和密度会影响载流子迁移过程,二者均对沿面闪络电压产生影响。  相似文献   

12.
采用微米和纳米氮化硼(BN)为填料,制备了微纳掺杂环氧/BN复合绝缘材料,并对BN掺杂总量一定时,环氧/BN复合绝缘热导率和击穿特性随纳米BN掺杂量的变化进行研究.结果表明:当控制BN掺杂总质量分数为20%时,随着纳米BN含量的增加,复合绝缘的热导率略有下降,工频电气强度先上升后下降,厚度为0.2 mm的试样在8 kV、25 kHz高频双极性方波电压下的耐压时间缩短.纯微米BN掺杂的环氧复合材料热导率最大(0.83 W/(m·K)),且在高频双极性方波电压下的耐压时间最长(193 s),分别比纯环氧树脂提高了277%和408%;当纳米BN的质量分数为1%时,环氧复合绝缘的工频电气强度最高,为131 kV/mm,比纯环氧树脂提高了27%.因此,对于微/纳米共掺杂环氧复合体系而言,纳米颗粒的加入主要有助于提高复合材料的工频电气强度,但会使复合材料的热导率下降,缩短其在高频双极性方波电压下的耐压时间.  相似文献   

13.
开展兼具非线性电导和介电特性的复合材料的理论基础和应用研究,有助于更有效、广泛地解决高电压等级电力系统绝缘设备或部件电场分布不均匀的难题。为此,制备了ZnO压敏陶瓷-硅橡胶复合材料并测量了其非线性压敏介电特性。结果表明:制备的复合材料具有良好的分散性和非线性电导及介电特性;当ZnO压敏陶瓷填料体积分数10%时,复合材料可以表现出明显的非线性介电特性,可以起到更显著的电场均匀作用;当ZnO压敏陶瓷填料体积分数20%时,复合材料呈现出明显的非线性电导特性,电导非线性系数可以达到10以上,当电场强度超过压敏电压梯度时电导率可以提高100倍以上,而电场强度达到1.5倍压敏电压梯度时,可在对不均匀电场起抑制作用的同时,避免较大的损耗。  相似文献   

14.
为从微观角度分析纳米SiO_2掺杂对环氧复合材料性能的影响,以双酚A二缩水甘油醚(DGEBA)、甲基四氢苯二甲酸酐(MTHPA)分别作为环氧树脂基体和固化剂,基于分子动力学(molecular dynamics,MD)的方法建立了高交联度90%的纯环氧树脂和粒径为1.5 nm、2.0 nm的SiO_2/EP复合模型,分析纳米SiO_2掺杂对环氧复合材料的微观结构影响及热力学性能的提升效果,并且对比纳米SiO_2粒径大小对材料性能提升的影响。研究发现,纳米SiO_2的掺杂能提高环氧复合材料的热力学性能,粒径1.5nm的纳米SiO_2对环氧复合材料的提升效果更加显著。其中,掺杂粒径1.5 nm的纳米SiO_2对环氧复合材料玻璃化转变温度的提升幅度为29.78 K,杨氏模量提高16.83%,剪切模量提高6.02%,体积模量提高4.20%。同时,纳米SiO_2的掺杂改变了环氧复合材料的微观结构参数,内聚能密度有明显的提高,自由体积占比和均方位移均有不同程度的降低,粒径为1.5nm的纳米SiO_2对材料的微观结构影响更明显;但纳米SiO_2的掺杂并未明显改变复合材料的全原子的径向分布函数。  相似文献   

15.
以尿素和六方氮化硼为原料通过球磨法制备了氨基化改性氮化硼纳米片(BNNS),并将改性前后的BNNS与环氧树脂混合制备BNNS/环氧复合材料,研究氨基化改性BNNS对环氧表面绝缘特性的影响.结果表明:通过球磨法成功将氨基接枝在氮化硼纳米片表面,改善了填料在环氧树脂复合材料中的分散性;相较于纯环氧材料,当改性BNNS的质量分数为0.5%时,BNNS/环氧复合材料的闪络电压提高了26.9%;此外,氨基化改性降低了材料表面的陷阱能级,加速了空间电荷消散速率;填充氨基化改性BNNS后复合材料的介电常数与介质损耗因数均有小幅提升,平衡空间电荷消散与极化弛豫两种效应对复合材料闪络电压的提升有积极作用.  相似文献   

16.
《高电压技术》2021,47(9):3144-3152
为改善纳米颗粒的团聚问题,有效提升复合材料的绝缘性能,首先对低气压下基于介质阻挡放电的纳米Si O_2表面氟化过程展开研究,重点讨论了Si O_2表面氟化过程及其主导放电条件。然后基于等离子体放电特性和发射光谱诊断,分析了CF_4/N_2混合气体等离子体的放电及分布特性,并对表面氟化处理纳米Si O_2进行微观表征。最后初步分析了该氟化技术对环氧基体电气性能的影响。研究结果表明:气压为10~13.5 k Pa、电压为5~7 k V的CF_4/N_2低温等离子体在放电空间内呈现均匀分布;研究范围内的CF_4/N_2低温等离子体的电子温度最低为0.497 e V,可实现CF_4中C—F断键,为Si O_2表面氟化创造条件;对纳米Si O_2进行10 min等离子体有效氟化,F元素质量分数达到10.05%,且以CF_2主要形式存在;纳米Si O_2团聚现象得到有效改善,在环氧基体中的分散更加均匀。掺杂Si O_2质量分数为5%的氟化填料后,环氧树脂局放起始电压提升最明显,较同掺杂含量未氟化试样提高17.21%。结果证明等离子体填料氟化处理Si O_2填料的的可行性,为氟化改性纳米填料提供新的研究思路。  相似文献   

17.
为研究氮化硼(BN)/环氧树脂复合材料的介电特性,在环氧树脂中分别添加不同质量分数的微米BN、未处理纳米BN和表面处理纳米BN制备BN/环氧树脂复合材料,并对其进行微观分析、介电频谱和介电温谱实验,研究BN质量分数、BN粒径和偶联剂表面处理对环氧树脂复合材料介电特性的影响。结果表明:复合材料的介电常数、介质损耗和电导率比纯环氧树脂有所降低;未处理纳米BN/环氧树脂复合材料和微米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而减小;表面处理纳米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而增大;纯环氧树脂和BN/环氧树脂复合材料的介电常数在10~110℃随温度升高呈上升趋势;纯环氧树脂和BN/环氧树脂复合材料的介质损耗在50~110℃随温度升高而增加,且增加幅度较大。  相似文献   

18.
将纳米Mg O颗粒与环氧树脂混合后制得不同掺杂量的纳米Mg O/EP复合电介质,采用SEM观察纳米Mg O在环氧树脂中的分散情况,采用DSC测试环氧复合电介质的玻璃化转变温度,并研究了纳米Mg O对环氧树脂介电性能的影响。结果表明:纳米Mg O颗粒在环氧基体中分散均匀,掺杂Mg O可以提高环氧树脂的玻璃化转变温度。随着纳米Mg O掺杂量的增加,介电常数先下降后上升,在掺杂量为1%时介电常数实部达到最小值,掺杂纳米Mg O使环氧树脂的中低频损耗明显降低;复合电介质的电导活化能和体积电阻率均随着纳米掺杂量的增加呈先上升后下降的趋势,在掺杂量为0.1%时电导活化能和体积电阻率达到最大;复合电介质的电气强度随着掺杂量的增加呈先上升后下降的趋势,当掺杂量为1%时电气强度达到最大值,相比纯环氧树脂提高了11.2%。  相似文献   

19.
聚合物纳米复合材料因其优良的电气绝缘性能在电介质绝缘领域得到了广泛应用。为了获得性能优良的环氧树脂绝缘材料,将采用硅烷偶联剂进行表面处理后的纳米Al N颗粒加入环氧树脂绝缘材料中,采用溶液共混法制备了Al N质量分数分别为0%、0.5%、1%、3%、5%、7%的Al N/环氧树脂复合材料,研究了不同Al N质量分数对Al N/环氧树脂复合材料绝缘性能的影响。结果表明,树脂基体和Al N填料之间实现了有效的结合,提高了环氧树脂的热稳定性;Al N的加入一定程度上减小了复合材料的体积电阻率,并且增大了复合材料的介质损耗因数,但对复合材料电气绝缘性能的影响较小;当纳米Al N颗粒质量分数为3%时,Al N/环氧树脂复合材料的交流击穿电场强度最大。因此,添加适量纳米Al N颗粒能够提高干式变压器环氧树脂的电气绝缘性能。  相似文献   

20.
为解决高压直流电缆附件中因复合绝缘材料电导率差异而引起的电场分布不均问题,采用纳米碳化硅为填料,对附件绝缘加成型液体硅橡胶进行改性,制备了具有非线性电导特性的纳米碳化硅/液体硅橡胶复合材料。同时对比研究了纯硅橡胶和质量分数分别为1%、3%、5%的纳米碳化硅/液体硅橡胶复合材料的非线性电导特性和介电特性。研究结果表明:相比于纯硅橡胶,纳米碳化硅/液体硅橡胶复合材料的电导率从原来的10-15 S/m增加到10-14~10-13 S/m左右,非线性系数由0.3提高到1.03,相对介电常数增加了0.46,介质损耗因数基本不变。为了验证非线性纳米碳化硅/液体硅橡胶复合材料在直流电缆附件内均化电场的效果,采用Comsol-Multiphysics软件,对其电缆终端和中间接头内的电场分布进行了仿真分析。仿真结果表明:将非线性纳米碳化硅/液体硅橡胶复合材料应用于高压直流电缆附件应力锥处,其电场集中最大值下降了80%,实现了均化电场的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号