首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
介绍了2014年国际大电网委员会(CIGRE)高压直流输电和电力电子技术专委会(SC B4)的主要专题和论文,涉及的技术领域包括:高压直流输电技术的发展;灵活交流输电(FACTS)装置研发及技术发展;电力电子技术在可再生能源并网领域的应用;高压直流输电工程应用中的一些典型问题等。  相似文献   

2.
介绍了2006年国际大电网会议(CIGRE)高压直流输电和电力电子专委会的专题报告。主要内容包括:新型高压直流输电与电力电子技术和工程、涉及高压直流输电与皇力电子技术的工程问题、直流输电和灵活交流输电装置对提升系统性能的作用以及会议的热点技术问题。  相似文献   

3.
介绍了2012年国际大电网会议(CIGRE)高压直流输电和电力电子技术专委会(SC B4)的主要专题和论文,涉及的技术领域包括:高压直流输电技术的发展——特别是千兆瓦级电压源换流器高压直流输电(VSC-HVDC)工程的最新进展;灵活交流输电(FACTS)装置研发和工程应用情况;电力电子技术在可再生能源并网领域的应用等。  相似文献   

4.
总结了输电系统中电力电子技术在改善电能质量、提高电网稳定性和功率灵活调节等方面的应用,论述了高压直流输电技术(HVDC)和柔性交流输电技术(FACTS)的结构原理、实际应用和发展前景,讨论了国内外在输电系统技术方面所取得的最新研究成果。  相似文献   

5.
介绍了2010年国际大电网会议(CIGRE)高压直流输电和电力电子技术专委会(SC B4)的主要专题和论文,涉及的技术领域包括:高压直流输电技术的发展--特别是±800 kV特高压直流输电和基于电压源换流器的高压直流输电(VSC-HVDC)的最新工程进展;灵活交流输电(FACTS)装置的应用经验及新的工程情况;电力电子...  相似文献   

6.
介绍了2008年国际大电网会议(CIGRE)中高压直流输电和电力电子技术委员会(SC B4)的主要专题和论文。涉及的技术领域包括:现有高压直流输电(HVDC)工程运行、可行性研究、规划、设计、可靠性标准,以及±800 kV特高压直流和基于电压源换流器的高压直流输电(VSC-HVDC)工程的新进展、灵活交流输电(FACTS)装置的应用和最新发展、新型大功率电力电子装置的发展和应用等。  相似文献   

7.
“电力电子技术”课程教学内容改革研究   总被引:1,自引:0,他引:1  
为了突出电气工程及其自动化专业(电力系统及其自动化方向)的特色,实现培养应用型高素质电力人才的目标,结合电力电子技术在电力系统中应用的一些新技术和装备,对电力电子技术课程内容进行改革。从柔性交流输电、高压直流输电、用户电力技术、智能电网、微电网等方面对现有的电力电子技术课程内容进行补充,使其更符合电力系统及其自动化方向教学要求。  相似文献   

8.
南方电网大功率电力电子技术的研究和应用   总被引:1,自引:0,他引:1  
大功率电力电子技术及其应用有利于提高电力系统的安全稳定和电能质量,推动着电网技术的进步.南方电网公司承担了多项涉及对高电压、大功率电力电子技术的国家级科技项目,已将多套先进的电力电子装置投入到所建成的多项高压直流输电工程中.阐述了南方电网在高压直流输电、直流融冰、SVC、串补、静止同步补偿装置、柔性直流输电和新能源等领域,对大功率电力电子技术的研究和应用所取得的成果及相关的示范工程,显示了南方电网积极推动大功率电力电子技术的发展对电网科技进步做出的突出贡献.  相似文献   

9.
《现代电力》2000,17(3):86
电力电子技术在输电和配电系统的应用 ,将成为本世纪末和下世纪初的重点研究开发领域。该技术在输电领域的应用除高压直流输电和动态静止无功被偿之外 ,灵活交流输电系统取得令人瞩目的成果。灵活交流输电系统的英文名称为“Flexible AC Transmission System”,在我国也被称为“柔性输电”,缩写为“FACTS”,是世界上 80年代后期发展起来的一项新的输电技术。其特点是利用电力电子技术和计算机技术对电力系统的参数进行综合连续调节控制 ,使电力传输更加灵活安全 ,大大提高电网的输电能力。柔性输电的发展以电力电子技术 ,特别是以高电压…  相似文献   

10.
灵活交流输电重庆大学刘海军,任霞电力电子技术是国内外电力工作者非常活跃的研究领域之一。大功率半导体开关元件的开关容量已从几十千瓦发展到几千兆瓦,并相继出现了一些新型半导体开关元件,这必将进一步促进电力电子技术的发展。与电力电子技术及直流输电技术密切相...  相似文献   

11.
高压直流输电(HVDC)及灵活交流输电(FACTS)装置因其优良特性被广泛应用于现代电网中,但是其实际应用时间较短,加之其控制器的复杂性,使得对大规模交直流混联电网中 FACTS 装置之间及 FACTS 装置与 HVDC 间的交互作用的研究不够成熟和完善.文中以定量分析南方电网中FACTS 装置之间以及 FACTS 装置与 HVDC 系统间的交互作用大小为目标,建立了含 FACTS 装置和 HVDC 系统的多机电力系统的线性化模型,并详细阐述了引入不同 FACTS装置及直流系统时,控制变量、输出变量的选择及对代数方程的处理.接着对南方电网进行等值,利用该线性化模型推导出等值系统的传递函数,利用 RGA 方法找出 FACTS 装置之间以及 FACTS 装置与 HVDC 系统间的交互作用的大小.最后通过大扰动下的 Prony 分析验证了 RGA 分析结果的正确性.  相似文献   

12.
随着交直流混联电力系统的快速发展,目前灵活柔性交流输电系统(FACTS)和特高压直流输电系统在我国电力系统中已得到广泛应用,为近年来我国风电大规模脱网问题提供了新的控制技术和有效手段。分析了系统交直流故障后的风电脱网场景,表明抑制故障后系统电压大幅波动是减少风电大规模脱网的关键。在此基础上,阐述了事故前FACTS优化配置和事故后采取HVDC紧急功率支援协调抑制风电大规模脱网的必要性。并基于对风电场汇集母线电压波动的改善灵敏度,以保证系统安全性为前提,通过协调优化事故前FACTS动态无功补偿设备布点、容量配置和事故后直流紧急功率支援,提出一种风电脱网控制代价最小的FACTS和HVDC的协调优化方法,实现风电脱网的抑制和电网的经济运行。最后,以实际规划电网进行了仿真验证,证明了该方法的有效性。  相似文献   

13.
大功率电力电子装置核心组件试验的目的是验证其符合设计准则,并确保大功率电力电子装置在正常及故障条件下都能完成预定的工作目标而不至于损坏或影响到所接入的电力系统。随着电力电子装置在电力系统中的广泛应用,大功率电力电子组件的试验技术已成为电力电子技术发展和工程应用极其重要的组成部分。电力电子装置容量的日益提高使得很难直接在电力系统中进行试验,等效试验成为必然的选择。由于其自身的高度复杂性,大功率电力电子组件等效试验方法的研究通常比传统电力设备更复杂、难度更大。大功率电力电子组件试验等效分析的目的是:首先从机理上保证在一定的试验条件约束下,试验方法及试验装置产生的电流、电压、机械和热应力等应与被试电力电子装置在实际运行中所遇到的各种工况具有等价效果;其次是利用必要的试验条件对试品耐受能力作出合理的评价。文章重点对大功率电力电子装置的等效试验机理、等效试验方法和技术应用进行了全面研究,相关研究成果已成功地推动了灵活交流输电技术和高压直流输电技术的工程化进程,为电力系统电力电子技术在中国电网成功应用奠定了重要的理论基础和实验平台。  相似文献   

14.
潮流和最优潮流分析中FACTS控制器的建模   总被引:6,自引:1,他引:5  
综述了最近FACTS控制器的数学模型在电力系统潮流和最优潮流分析中的新进展.不仅讨论了单换流器FACTS控制器,如静止同步并联补偿器(STATCOM)和静止同步串联补偿器(SSSC);而且也讨论了多换流器FACTS控制器,如统一潮流控制器(UPFC)、相间功率控制器(IPFC)、通用统一潮流控制器(GUPFC)和电压源型直流输电(VSC HVDC).此外还讨论了基于电压源换流器技术的HVDC的数学模型.不仅涵盖FACTS控制器的单相数学模型,而且也涉及FACTS控制器的三相数学模型.此外,还探讨了多换流器FACTS控制器的电流、电压以及功率等不等约束在潮流计算中的数学模型及计算机实现.  相似文献   

15.
介绍新研发的电力系统电力电子及FACTS装置仿真软件包EMTPE,其中包括电力电子装置的数值计算方法、大量全控型电力电子器件的模型、相量实时测量控制模块、过电压闪络率计算方法、工作平台与人机界面、总体合成及FACTS装置仿真等。给出一些算例以演示新计算方法的效果。  相似文献   

16.
静止无功补偿器对电力系统性能改善的综述   总被引:2,自引:0,他引:2       下载免费PDF全文
随着电力电子技术、微处理技术和控制技术的发展,柔性交流输电系统FACTS(Flexible AC Transmission System)的出现,为电力系统急待解决问题提供了新的手段或策略。静止无功补偿器(SVC)作为FACTS家族的成员之一,对电力系统性能的改善也已取得了可喜的成绩。因此,从静止无功补偿器提高稳态输送容量、提高暂态稳定性、增强系统阻尼抑制低频振荡、缓解次同步谐振、预防电压不稳定或控制电压的波动、改善直流输电系统的性能等六个方面进行综述。  相似文献   

17.
智能电网的发展给大功率电力电子提供广泛的市场机遇。这里介绍了柔性交流输电技术、高压直流输电技术、高压变频技术、同步开断技术和需求侧电力技术,分析了这些电力电子技术在智能电网中的作用和发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号