首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
根据串联谐振变换器具有恒流的特性,文中将串联谐振变换器用于LED恒流驱动。文中对串联谐振变换器开环工作状进行等效分析,确定了输出电流平均值与开关频率、负载电阻的关系以及开环恒流状态下变换器的驱动能力大小、恒流精度与负载电阻的关系。文中据此对谐振变换器进行优化设计,保证串联谐振变换器工作在谐振电流连续状态下实现开环恒流,并进行了仿真与试验,结果表明优化设计的串联谐振电路能在谐振电流连续状态下实现LED的开环恒流驱动,证实了文中提出的优化设计的方法的正确性。  相似文献   

2.
串联谐振恒流LED驱动电源的分析及设计   总被引:1,自引:0,他引:1  
用串联谐振变换器来实现LED的开环恒流驱动.对串联谐振变换器开环工作状态进行等效分析,确定了开环恒流条件和谐振参数与开关频率的选择依据,以及LED数目、变压器变比对恒流效果的影响,为LED数目的确定及变压器变比的选择提供了依据.据此设计了谐振变换器,并进行了仿真与实验.结果证实了所提出的分析设计方法的正确性.  相似文献   

3.
目前,大功率LED驱动电源普遍采用LLC谐振变换器通过变频控制实现恒流和调光目的,其工作频率随灯电压和负载电流变化大,且闭环控制复杂。本文提出1种基于CLCL谐振网络的LED恒流驱动电源拓扑结构,无需闭环控制就能实现输出电流的恒定。详细介绍了该驱动电源电路拓扑及工作过程,并对CLCL谐振网络的恒流工作特性进行了分析与仿真,最后设计了1台108 W的恒流LED驱动电源原理样机,实验结果验证了所提电路具有良好的恒流特性,且控制简单,容易实现。  相似文献   

4.
针对以LLC谐振变换器为主电路的锂电池充电器开关频率变化范围较大,恒压涓流充电时调节特性差的问题,提出了以电容输出滤波的半桥LCC谐振变换器作为主电路的锂电池充电电源设计方法.分析了电容输出滤波半桥LCC谐振变换器的恒流和恒压输出特性以及恒流恒压模式的转换过程,给出了变换器精确的参数设计方法.搭建了160 W的实验样机,实验结果验证了该方法是可行的.恒流模式下,当输出电压在20~80 V变化时,变换器的工作频率变化仅有3.33%,并且通过调节工作频率,可以实现空载恒压输出.变换器的开关管能在全范围内实现软开关,最高效率94.5%.  相似文献   

5.
LED驱动器中电解电容寿命较短,与LED灯的长寿命不匹配,限制了LED照明光源的长时间使用。基于LCL谐振变换器的恒流特性,提出一种脉动电流驱动的两级无电解电容LED驱动电路方案。通过将LED电流与功率因数校正PFC(power factor correction)输出电压加权反馈调节PFC输出电压,并使LED灯以脉动电流方式工作,从而减小所需的储能电容大小,提高输出电流的恒流精度。详细介绍了无电解电容LED驱动电路的工作原理和控制策略,给出了关键参数的设计思路。最后设计了一台100 W的原理样机,并进行了实验测试。实验结果验证了所提方案是可行的。  相似文献   

6.
针对发光二极管(LED)恒流驱动的要求,提出一种基于CLCL-T谐振网络的LED恒流驱动拓扑结构,介绍了谐振网络的恒流原理;推导输出电流对谐振网络参数的灵敏度,分析了谐振网络各参数变化对输出恒流特性和开关管零电压开关(ZVS)的影响,以此给出了一种兼顾谐振网络恒流特性、电流灵敏度和开关管ZVS软开关条件的谐振参数设计方案。最后设计一台54 W的原理样机,实验结果验证了所提电路具有良好的恒流特性,且控制简单,容易实现。  相似文献   

7.
研制了一种恒频恒导通时间控制方式的LCC串并联谐振变换器作为高压脉冲发生器的初级充电电源。通过分析电流断续模式(DCM)下工作过程,定量得出了DCM LCC变换器电压、电流、功率输出特性。利用仿真软件Pspice对LCC谐振电路工作过程和特性进行仿真分析,给出变换器设计依据。最后,搭建实验样机验证了设计的正确性。  相似文献   

8.
为延长无线充电汽车中蓄电池的使用寿命,提高充电效率和速度,满足电池充电的过程先恒流充电到一定电压后再恒压充电的要求,本文从电路的本质属性出发,分析了双边LCC恒流输出和双边LCL恒压输出特性,研究了对电池恒流恒压充电的方法,并且设计了在切换状态后,可以保持输出电流和电压处在同一个谐振频率位置的充电电路.在Simulink中仿真,观察输出电流电压特性,给出了一套可以实现双边LCC恒流输出和双边LCL恒压输出功能的参数,同时研究了本方案的传输功率和传输效率.  相似文献   

9.
两相并联LCL-nT谐振型多路均流LED驱动器研究   总被引:1,自引:0,他引:1  
针对大功率发光二极管(LED)应用场合下需要多路输出及各路电流均衡的问题,提出一种具有多路输出均流的两相并联LCL-n T谐振型电路拓扑结构,详细分析两相并联LCL-nT型谐振变换器的恒流特性、多路并联输出的均流特性以及移相调光控制策略;推导出恒流工作频率表达式和能够实现多路均流的负载范围,并对谐振网络的阻抗特性和电压增益特性进行了分析,在此基础上给出一种兼顾输出功率和开关管零电压开关(zero voltage switching,ZVS)的参数设计方法。最后设计1台200 W的实验样机,实验结果验证了所提出的电路拓扑具有良好的恒流特性和均流特性,并且能实现对LED的全范围调光。  相似文献   

10.
输入电压和负载宽范围变化时,变频控制LCC谐振变换器的开关频率变化范围宽,而移相控制LCC谐振变换器难以实现宽范围零电压关断(zero voltage switching,ZVS)。为了在较窄开关频率范围内实现LCC谐振变换器的宽范围软开关,该文提出一种脉宽-脉频调制(pulse width modulation-pulse frequency modulation,PWM-PFM)混合控制LCC变换器。通过同时调整LCC变换器原边开关管的导通角与开关频率,在宽输入电压和宽负载变化范围内,提出的PWM-PFM混合控制LCC变换器能在稳压输出的同时保持变换器ZVS软开关工作。此外,PWM-PFM混合控制LCC谐振变换器的开关频率范围较窄,简化了变换器磁性元件的设计。以工作在电容电压连续模式(continuous capacitor voltage mode,CCVM)的LCC谐振变换器为例,利用基波近似法,分析PWM-PFM混合控制LCC谐振变换器的工作原理和控制特性,对谐振元件和控制参数进行设计。最后,通过一台100~200V输入、48V/500W输出的实验样机验证了理论分析的正确性。  相似文献   

11.
陈权  毛行奎 《电气开关》2021,59(2):56-61
半桥LLC谐振变换器以其高功率密度、高效率等优点被广泛的应用于LED照明和通信电源等领域。在LLC谐振网络的设计中,合理的谐振参数是保证变换器稳定高效运行的前提。本文针对LED驱动电源低压大电流的应用场合,分析其所适合的工作区域,然后根据效率及输出增益范围的要求对励磁电感及k值进行优化设计,从而得到准确的谐振参数。最后制作了一台额定输出48V/30A的样机,其输出电流恒定30A,输出电压范围为30~48V,峰值效率为96.3%,实验结果验证了该设计方法的正确性。  相似文献   

12.
提出一种多模式复合调制的线性-谐振(L-R)型LCC谐振变换器.该变换器根据Boost调制的思路,结合传统LCC谐振变换器,实现了电感电流线性-谐振型变化的转换,具有全负载范围的软开关特性.在复合调制方式下,变换器能实现3种工作模式的互相转换以适应宽输出电压和负载变化范围的应用场合,解决了传统LCC谐振变换器在轻载条件...  相似文献   

13.
半桥LLC谐振变流器作为中功率开关电源的最佳拓扑选择,通常应用在恒压输出场合中.针对用于LED驱动的高效率恒流电源的DC/DC部分,这里提出一种适用于宽范围输出的新设计方法,并给出设计流程,分析了对设计参数的影响和高效率优化.同时根据所述设计原则构建了一台140 w的半桥LLC变流器样机,经过参数优化,其在整个输出电压...  相似文献   

14.
刘文菡  刘雪山  贺明智  周群  孙曼 《电源学报》2022,20(5):177-186,204
传统的二次型Boost功率因数校正变换器只能实现升压输出,在一定程度上限制了其在LED驱动电源中的应用。本文基于二次型Boost变换器提出了一种Boost型无频闪谐振降压式LED驱动电源,并分析了其工作原理及特性。该LED驱动电源利用一个有源开关管将二次型Boost变换器与一个谐振网络进行整合。与传统的二次型Boost变换器相类似,该LED驱动电源可以实现高效率和高功率因数。此外,该LED驱动电源可实现低电流纹波和降压变换输出。最后,搭建了一台84W的实验样机,最高效率可达到92.88%,验证了理论分析的正确性及可行性。  相似文献   

15.
LCC串并联谐振变换器较之其他形式的谐振变换器能更有效利用高压变压器的漏感和寄生电容实现软开关,并且能更大范围地调整输出电压,从而更加适用于高压电源。提出了一种输入并联输出串联LCC变换器的设计,分析了软开关实现的条件。所设计的变换器采用了主从控制方法,主模块采用脉冲频率调制,从模块采用脉冲频率调制结合脉冲跨周期调制,模块之间采用交错控制技术。实验结果表明,稳态运行时模块间均压误差小于2%,稳压误差小于1%。  相似文献   

16.
介绍一款采用AT9933芯片的PWM恒流LED汽车前照灯驱动电路,其驱动、拓扑和调光方式分别采用开关型变换器、Boost—buck拓扑和PWM调光方式。负载采用8颗1W大功率白光LED串联。实验结果表明,当输入电压在9~16V之间变化时,输出恒流大小为342mA,电流精度达2.3%;当输入电压为12V时,输出电压为25.12V,电路转换效率达80.44%。  相似文献   

17.
Abstract—Electrolytic capacitor is a key factor that limits the life-time of the driver in a high-power light-emitting diode (LED) lighting. This article presents a high-power LED lighting driver on a digital signal processor without an electrolytic capacitor. The driver is composed of three stage circuits. The first stage is the boost power factor correction converter to achieve a high power factor. As it does not use an electrolytic capacitor, the output voltage ripple is larger, which directly affects the overall performance of the LED driver. Consequently, it must be optimized through the second and third stages. The second stage is the two-output LLC (Double inductance and capacitance) resonant converter, which is driven by a digital signal processor. This stage provides galvanic isolation and reduces voltage. The third stage is the two-input buck converter based on digital signal processor control that reduces the low-frequency ripple generated from the first two stages. Moreover, the regulation of each LED string current is achieved at this stage. The simulation and experimental results show that this LED lighting driver can achieve a high power factor and good constant current characteristics.  相似文献   

18.
New power control is introduced in the full-bridge dc-dc converter to drive an LED lamp in this paper. LEDs are semiconductor devices that behave like a constant voltage load with low equivalent series resistance (ESR). Hence, they require precise control for current regulation. In the proposed driver, the LED lamp is driven by two voltage sources connected in series through a series resonant circuit. It processes the majority of lamp power through the full-bridge diode rectifier and supplies small power through a center-tapped rectifier. The LED lamp current is controlled at the selected operating current by using center-tapped rectifier output voltage. In addition, pulse-width modulation (PWM) dimming is implemented. The proposed topology features zero-voltage switching (ZVS), regulation of lamp current, dimming operation, and high efficiency. The working principle, performance, and prototype validation are given for the proposed LED driver.  相似文献   

19.
This paper proposes a single-stage, single-switch, non-isolated step-up converter with resonant inverter for a standalone photovoltaic battery-powered light-emitting diode (LED) street light. The LED driver presented in this paper integrates a high step-up DC–DC converter with coupled inductors and LCC resonant converter into a single-stage conversion circuit topology. The proposed converter is a compact cost-effective driver for powering a 60 W LED Street light with a battery backup charged from PV array of 12 V. The modes of operation and analysis of the proposed converter are explained. The design of the circuit elements is done based on the theoretical analysis. The proposed circuit has been simulated, and prototype has been developed to demonstrate its feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号