首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
该文提出一种可变结构的多谐振软开关直流变换器.此变换器采用双变压器结构,运用两个互补导通的辅助开关管进行变换器拓扑结构的转换.相互变换的工作模态有三种,能够满足不同工况对高电压增益或高变换效率的要求.此外,该文通过合理设置谐振频率和增益点的方式对变换器的谐振参数进行设计.随后,针对额定条件下变换器同时传递基波和3次谐波能量的工况,构建同时考虑基波和3次谐波的损耗模型,对变换器的损耗分布进行详细估算.最后,为验证理论分析的可靠性,基于一台实验样机对所述变换器进行功率实验验证,在输入电压80~600V变化范围内,输出电压始终稳定在400V,在获得较宽电压增益范围的同时实现了全增益范围内的高效率变换,变换器最高效率达97.6%.  相似文献   

2.
为了解决双向DC-DC变换器输入、输出电压范围过窄的问题,该文提出一种高增益对称双向LCLC谐振变换器。提出的谐振变换器不是利用变压器的励磁电感参与谐振,而是在变压器的一次侧并联一个LC支路代替变压器励磁电感的作用,使得变换器在电感比较大的情况下仍有较高的增益,兼顾了LLC型谐振变换器在谐振点的高效率和宽的增益范围,且能保证一次侧和二次侧的软开关特性,实现谐振变换器的对称双向运行。该文基于基波分析法建立基波等效模型,推导出变换器的增益公式,分析谐振参数对直流增益特性的影响。最后搭建一台100~200V/24~48V、500W的实验样机,实验结果验证了理论分析的正确性和所提出拓扑结构的可行性及有效性,样机的最大效率达到96.3%。  相似文献   

3.
为了进一步提高应用于低压大电流场合中的LLC谐振变换器的效率和功率密度,减小器件并联带来的不均流和局部过热等问题,输入侧绕组串联、输出侧绕组并联的平面磁集成矩阵变压器得到广泛使用。然而,传统矩阵变压器大多采用分离磁心实现,产生的绕组损耗和磁心损耗较大,同时也限制了功率密度的提高。该文基于磁通抵消原理,将原来需要独立磁心实现的矩阵变压器集成到单个磁心中实现,进一步减小了磁心体积和磁心损耗;同时给出一种变压器绕组损耗和磁心损耗计算模型,并基于该损耗模型提出一种磁心损耗与磁心所占印制电路板面积的折中优化设计方法。最后,采用高频宽禁带氮化镓器件,设计了一个功率400W、谐振频率1.5MHz的实验样机,验证了所提平面磁集成矩阵变压器优化设计方法的正确性和有效性。  相似文献   

4.
高功率密度LLC谐振变换器的研究   总被引:1,自引:1,他引:1  
介绍了一种高功率密度、宽输入电压范围的LLC谐振变换器设计方法.首先,通过基波等效模型分析了电路的直流增益特性,并以此为依据讨论了宽输入电压范围的LLC谐振变换器参数设计要点;然后,根据损耗分析和实验研究讨论了小功率电路设计中磁元件的重要性.最后,通过实验验证了上述分析结果.  相似文献   

5.
针对车载DC-DC变换器输入电压变化范围大的问题,提出一种组合式宽输入高效率DC-DC变换器。该变换器包括飞跨电容(FC)型三电平Buck电路和LLC谐振电路两部分,FC三电平Buck电路输出端口与LLC谐振电路输入端口串联,通过控制FC三电平Buck电路占空比实现输出电压调节以适应宽输入电压范围,同时三电平结构降低了开关管电压应力、减小了损耗;LLC谐振电路传输负载所需全部功率,采用定频开环控制以获得高效率和稳定增益,同时实现了电气隔离。详细分析了组合式变换器的拓扑结构、直流增益以及工作效率,并与相同电路构成的级联式变换器进行了效率特性对比,根据组合式变换器的拓扑结构和工作特性,提出一种解耦控制策略,实现输出电压稳定和飞跨电容电压平衡,最后搭建了一个200~400 V输入、12 V/20 A输出的实验电路进行验证,实验结果表明所提组合式变换器的正确性和可行性。  相似文献   

6.
传统频率控制的LLC谐振变换器不适用于宽电压范围的应用场合,且存在较大的循环电流而难以实现高转换效率。为了解决这些问题,提出一种简单的定频PWM控制策略,谐振变换器的后桥臂通过固定的开关频率控制,开关频率等于谐振频率;前桥臂采用PWM控制,将谐振网络的输入电压转换成多电平电压,谐振变换器实现2倍的电压增益调节范围。在这种控制方式中,增益范围独立于负载和励磁电感,可以简化谐振参数设计,通过设计较大的励磁电感减小电路的传导损耗和开关关断损耗,提升转换效率。仿真结果表明:谐振变换器可以实现宽输出电压,该控制策略降低了循环电流和关断电流。最后,通过实验验证了所提控制策略的可行性。  相似文献   

7.
为实现更高的电压增益,提出一种耦合电感倍压解耦磁集成高电压增益变换器。该变换器通过设计耦合电感匝数比和调节占空比来实现高电压增益,采用磁集成磁件设计方案,减少了变换器磁件的体积和数量。该文首先分析变换器器件的应力,给出变换器电压增益与占空比之间的变化关系;然后,利用磁路-电路对偶分析法推导得到耦合电感与输入电感解耦集成磁件的磁路模型,获得了输入电感与耦合电感之间的解耦磁集成设计准则;最后,搭建一台额定功率为300W的实验样机,对所提出的变换器和解耦集成磁件设计理论进行实验验证,验证了理论的正确性。变换器的效率达到93%以上,在光伏发电系统中具有一定的实用性。  相似文献   

8.
LLC谐振变换器具有高功率密度、高效率等优点,得到了广泛的应用.在电池充电器应用中,充电过程会在很宽的范围内改变输出电压,使LLC变换器在效率和增益之间难以优化.提出了一种改进型变压器实现优化效率和增益,将谐振电感和励磁电感集成到变压器上,通过与变压器副边并联的开关控制电感实现励磁电感随着输出电压和负载动态调整.与传统的LLC谐振变换器相比,改进型变换器励磁电感可以动态调节,不再为固定值,能减少通态损耗和绕组损耗,提高了增益和效率.通过仿真和250 W的样机验证了改进型变压器设计的可行性.  相似文献   

9.
直流变换器广泛应用于电动汽车充电系统与光伏发电系统,如何适应输入/输出电压大范围变化,实现直流变换器的宽增益和高传输效率为学术界和工业界所关注。其中,LLC、LLC_LC、LLCLC谐振变换器虽具有高功率密度、低电磁干扰等特性,但存在磁元件与谐振网络参数设计难度大,造成变换器输出不稳定等不足,难以满足实际应用的要求。为此,提出了宽增益高效谐振型直流变换器技术。首先总结了谐振型直流变换器的基本原理,围绕其拓扑结构及调制策略的国内外研究进展,重点就宽增益与高效谐振型直流变换器应用需求进行阐述。然后分析了LLC_LC、LLCLC多模式PWM倍压整流变换器拓扑及调制策略。最后结合仿真与实验验证结果,证明了该宽增益高效谐振型直流变换器拓扑及其调制策略的有效性,最高可实现输出电压范围为1~6.2,转换效率达96.1%,具有较宽广的应用前景。  相似文献   

10.
提出一种可支持多模式切换运行的拓扑变换型多谐振软开关直流变换器。该变换器通过引入辅助开关管来改变多谐振腔单元的结构,进而在不同应用场合下表现出自适应的谐振特性。其中,含双变压器的多谐振结构用来满足高电压增益的需求,而五元件多谐振结构则工作在额定点处以保证高效率转换。此外,通过对变换器谐振频率点和峰值增益点位置的合理设计,变换器获得了在狭窄开关频率范围内实现宽电压增益范围和高转换效率的优点。最后,为了验证所提变换器的性能和参数设计方法的有效性,搭建一台额定功率为500W的样机进行了实验验证。当输入电压从80~600V变化时,变换器的输出电压保持400V恒定不变,其最高变换效率达到97.93%。  相似文献   

11.
提出一种应用在储能系统的双向DC-DC变换器,其具有电压增益高、电压应力小和软开关范围宽的优势。通过将内置变压器集成在飞跨电容结构和2个交错的Buck/Boost结构中,可以同时实现电压增益高和电压应力小。内置变压器结构的特点是磁芯中的磁通可以相互抵消,避免了磁饱和,从而有效地减小磁性器件的体积。通过采用交错的结构,低压侧的电流纹波明显减少;通过调节占空比,实现变压器原、副两边的电压匹配,从而减少环流;同时,通过采用移相控制,可以单调地调节传输功率;合理设置参数后,所有MOSFET可以实现宽范围的软开关。详细给出了工作原理和稳态分析,并设计了额定功率为1kW的实验样机,以验证所述变换器的可行性。样机的效率在升压模式和降压模式下是相似的,这表明该变换器的效率是不受功率传输的方向影响的;在低压侧电压变化时,该变换器的效率变化不大。因此,所提变换器适用于需要高电压增益、宽电压侧电压范围的储能系统。  相似文献   

12.
研究一种Buck-Boost集成CLLC直流双向变换器,适用于输入输出共地且宽输入电压范围场合应用。直流双向变换器通过Buck-Boost与CLLC电路原边集成、CLLC副边母线电容叠加到原边母线电容上实现高增益。半桥CLLC电路与Buck-Boost电路集成,通过定频PWM同步控制;有助于开关管在较宽输入电压和负载范围实现软开关、高功率密度。该文分析了变换器的拓扑结构及工作模式,理论推导出变压器匝比取n_1:n_2=1:1即可获得高增益,减小了高频谐振变压器的体积和原边的谐振电流。此外,研究Buck-Boost电感L_b对变换器的软开关特性影响,给出了软开关实现的工作条件。搭建了一台低压侧适用电压20~80V、高压侧适用电压100~400V,双向功率600W的实验样机,实验结果验证了理论分析的正确性及方案的可行性。  相似文献   

13.
针对电动汽车车载充电器的后级DC-DC环节,提出一种具备宽输出范围的多电平LLC谐振变换器。该变换器通过增加一组半桥和辅助变压器,构造出高于输入电压的多电平结构,结合定频移相脉宽调制控制,实现两倍电压增益拓展。该方案避免了变频控制下增益范围对谐振参数的制约,简化了参数设计过程。工作于串联谐振点使变换器在整个充电工作过程中均可实现功率管的零电压开关和整流管的零电流开关,有利于系统效率的提升。搭建一台输入380V、功率3.3kW的实验样机,验证所提拓扑与控制方案的可行性。经测试,变换器能为动力电池提供250~420V的充电电压,其峰值效率达到了97.1%。  相似文献   

14.
提出一种新型CDT-LC多谐振软开关双向直流变换器。基于传统LLC谐振拓扑,通过引入辅助变压器构建新的谐振结构,不仅保留了软开关高效运行的优点,同时收获了更好的电压增益特性,实现在较宽电压增益范围仍具有较高的工作效率。此外,对拓扑的工作模态以及增益特性进行详细分析,为变换器工作模式设计提供理论依据。在此基础上,计算分析变换器损耗的损耗分布并采用合理的优化方法提高效率。最后,建立2.5kW样机进行实验,验证了变换器的性能与理论分析的正确性,其最高效率可达97%。  相似文献   

15.
LLC谐振变换器电压控制模式通常采用误差放大器输出电压来直接控制开关频率,该控制方法使LLC谐振变换器的增益与频率之间的关系较为复杂,导致补偿网络设计相对较难,动态响应速度较慢,且大多数控制方案都未考虑集成变压器次级漏感带来的虚拟增益对谐振变换器参数设计的影响。针对以上问题,研究了基于充电电流控制的LLC谐振变换器,分析了变压器次级漏感,推导出电压增益表达式。与传统电压模式控制LLC谐振变换器相比,充电电流控制LLC谐振变换器保持了软开关特性,输入瞬态响应速度和负载动态响应速度均有较大提升,无需压控振荡器,在简化反馈回路设计的同时实现了固有前路反馈。文中详细分析了充电电流控制LLC谐振变换器的工作原理和集成变压器次级漏感的考虑事项,最后通过仿真和实验验证了理论的正确性。  相似文献   

16.
在输入电压宽范围变化时,变频调制CLLLC变换器存在开关频率变化范围宽的问题,而移相调制CLLLC变换器难以实现宽范围零电压导通(ZVS)。为了实现宽输入电压CLLLC变换器的高效率,该文提出一种变频双移相调制方法。通过同时调节开关频率、一次侧全桥和二次侧全桥之间的移相角,拓宽CLLLC变换器的增益并提高其效率。采用时域分析法求解变频双移相调制CLLLC变换器的电压增益与谐振电感电流有效值,并分析频率以及移相角对电压增益和谐振电感电流有效值的影响。最后,通过搭建一台100~300 V输入、48 V/400 W输出的实验样机,验证了理论分析的正确性。  相似文献   

17.
LLC谐振变换器具有初级开关管易实现全负载范围内的零电压开关,次级二极管易实现零电流开关,谐振电感和变压器易实现磁性元件的集成,以及输入电压范围宽等优点,得到了广泛关注.利用纯阻性归一化增益曲线提出了谐振网络参数的设计方法,采用高速信号处理DSP2812实现了先进的控制策略,提高了系统性能.最后以应用于蓄电池充电器的实...  相似文献   

18.
以软开关特性及高效而著称的LLC谐振变换器,往往需要具备宽输入电压范围,以满足掉电保持时间的实际应用要求。常采用降低励磁电感值的方法,但会增大谐振网络回流功率,降低运行效率。为此,提出一种带辅助双向开关单元的LLC谐振变换器,能够在输入母线电压跌落时,充分利用辅助双向开关单元,使得变换器能够在较大的励磁电感下,实现高电压增益和高效常态运行。该文详细描述分析了变换器在常态和掉电保持两种模式下的运行过程、电压增益特性及谐振元件设计约束条件,为变换器的设计提供了理论基础。进而,搭建了工作电压200~390V,输出48V/21A的样机。实验结果表明,该文所提出的变换器兼具常态运行时高效率和掉电保持运行时宽输入电压范围的优点,应用价值高。  相似文献   

19.
文中提出CLLC双向谐振变换器高频谐振电感–变压器一体化磁集成结构。采用矩阵式磁芯结构和非对称绕组结构设计,仅通过一个磁件即实现了双向CLLC谐振变换器中原边高频谐振电感、副边谐振电感和高频隔离变压器的集成,且利用矩阵式磁芯结构布局,实现了磁板中高频磁通抵消和磁通均匀分布,有效降低了磁件体积和损耗。文中详细分析所提出的矩阵式集成功率磁件的磁路模型,并给出集成功率磁件的优化设计方法,最后通过有限元仿真和样机实验证明所提出的电感–变压器一体化集成方案的可行性和有效性。  相似文献   

20.
LLC谐振变换器广泛应用于分布式电源系统DC/DC变换器的前端和可再生能源发电系统,而LLC谐振变换器的磁元件的集成平面化使其具有高性能、高效率和低成本的优点.介绍一种基于损耗的改进的变换器设计方案,从损耗、增益、空载特性等多角度分析谐振电感、变压器激磁电感、谐振电容的影响,从而确定性能最优的系统参数.由于平面磁元件在DC/DC变换器中起着十分重要的作用,通过有限元分析软件Maxwell对多种结构形式的平面变压器进行数值仿真,确定变压器设计的最优结构,实现对LLC谐振网络的精确控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号