首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
电池结构对锂离子电池的功率性能有重要的影响。本文研究了一种新型结构锂离子电池,并测试不同结构电池的倍率循环特性、不同倍率条件下倍率特性及不同放电电流下电池表面温度分布梯度。测试结果显示:不同倍率条件下新型结构的锂离子电池表现出较佳的倍率放电特性,20C放电容量是1C时放电容量的87.75%;新型结构设计的电池表现出良好的2CC/5DC倍率循环特性,循环850次容量保持90%左右,不同倍率放电电流下电池表面温度分布及温度梯度小,3个位置温度在63.6~74.8℃,对电池内部膜片的表面反应活性影响较小。这种新型结构电池有助于改善单体电池及电池组的综合功率性能。  相似文献   

2.
郑玲玲  智茂永  岳姗  潘治衡 《电池》2024,(2):217-221
锂离子电池的性能对温度很敏感。由于高倍率放电带来的温度变化较大,对电池热管理的要求越来越高。为调控电池的最高温度及温度均匀性,制备水合盐相变材料。该相变材料由三水醋酸钠、甘氨酸、十二水磷酸氢二钠构成的共晶水合盐和膨胀石墨组成。当添加质量分数5.0%的膨胀石墨时,材料的相变温度和相变焓分别是45.31℃和196.17 J/g,热导率为1.60 W/(m·K),且抗泄漏能力较好。在室温(25℃)下,当放电倍率为2 C时,采用相变冷却,单体电池的最大温差为0.21℃,电池组的最高温度控制在55℃以内,电池组间的最大温差为2.41℃,分别比空气冷却降低了89.55%、22.24%和77.46%。与空气冷却相比,相变冷却可提高电池组在高倍率放电时的温度均匀性,并使其处于合适的温度范围。  相似文献   

3.
锂离子电池组热行为对电池整体性能发挥起着至关重要的作用,研究电池组热效应对生产实际具有很大意义。基于COMSOL仿真平台建立3×3模块三维热模型,定量分析5 C工作电流条件下的温度分布。研究表明:模块温度呈辐射状由内向外逐渐减小,最高温度集中在中心区域;随着放电进行,电池内部温升逐渐增加,并且单体间温差在可控范围;换热系数为10 W/(m~2·K)条件下,5 C放电可使电池组工作在常温范围,表明在低于此倍率放电下,电池组均可正常工作。  相似文献   

4.
分析锂离子动力电池的发热机理,总结出电池发热与电动势温度系数、电池荷电状态(SOC)值、电池内阻、电流倍率等因素有关,通过实验在不同环境温度下对三元锂离子电池重要特性指标进行研究。得出结论:放电容量随环境温度的升高而增大,随放电倍率的增大而降低;直流内阻在低温时升高明显,放电内阻大于充电内阻;在低温下荷电状态-开路电压曲线低于高温下曲线;放电效率曲线得出电池正常工作的温度参考范围。对于电动汽车电池热管理系统的设计具有重要的意义。  相似文献   

5.
以三元体系锂离子电池单体为研究对象,将温度和放电倍率作为考察因素,电池电压降和电池温升作为分析特性,通过控制变量法选取典型工况1 C放电倍率及25℃环境温度,在此基础上探究温度以及放电倍率与电池电压降和电池温升之间的关系,简要探讨了不同温度下和不同倍率下放电对锂离子电池特性的影响,论述了电池温度与放电倍率在不同区域影响的显著性,同时也指出锂电池高倍率放电的危险性。  相似文献   

6.
通过建立锂电池的热模型,分析了锂电池在不同倍率放电时的发热量。在液体冷却方式下对锂电池组进行了散热设计,模拟散热器在电池组1 C、3 C、5 C放电时流体温度和流量变化情况下的散热性能。仿真结果表明:采用液体冷却能有效降低电池组温度,电池之间的温度一致性好,但在大倍率放电时,单体电池内外温差比较大;而在不同工况下通过改变入口质量流量和优化设计,可以减小电池内外温度差,使电池工作在合理的温度范围内。  相似文献   

7.
研究电池组的温度场对于电池系统设计和热管理设计具有十分重要的意义.实验研究了18650磷酸铁锂电池单体的基本性能,测量了不同温度和放电倍率下电池表面温升情况.根据实验结果及已有的生热模型和传热模型,利用Fluent仿真软件研究电池单体在不同温度和放电倍率下的温度场.构建了电池组热分析模型,模拟分析了电池组存在单体差异(...  相似文献   

8.
安治国  邓芳  严冬  张显 《电源技术》2021,45(9):1125-1128,1192
针对圆柱形锂离子电池,提出一种风冷式膨胀石墨(EG)石蜡复合相变材料(CPCM)电池模组散热结构.建立了该电池模组的热仿真模型并进行数值模拟,结果表明,EG的质量分数为12%时,电池模组的最高温度及温差同时达到最低值;电池模组进行连续1C充电/3C放电充放电循环,空气流速为3m/s时,在两次充放电循环过程中,每一个时刻都能将电池模组的最高温度及温差控制在合适的工作范围内.在环境温度为37℃时,该热管理系统能将电池模组的最高温度控制在50℃以内,温差控制在5℃以下.  相似文献   

9.
针对电动汽车用锂离子动力电池热特性,以3.2 Ah锂离子动力电池为研究对象,建立了锂离子动力电池的热模型。分别对锂离子单体电池在不同放电倍率、不同环境温度下的热特性进行了仿真和实验。结果表明,锂离子电池温升呈现非线性特征,在放电末期温升速率明显增大;锂离子电池的温升和温升速率随着放电倍率的增大而增大;仿真温度和实验温度变化趋势基本一致,说明所建立的数学模型能够较准确地描述锂离子单体电池放电过程热行为。进行锂离子单体电池热特性仿真和分析,可以为热管理系统设计提供依据。  相似文献   

10.
针对电动汽车动力电池在不同放电倍率下存在温升发热导致的温度分布不均及过热现象,以锂离子电池为研究对象,建立单体电池的发热模型,仿真分析不同放电倍率下的温升情况,并与实验探究的单体电池发热情况进行对比。在验证单体电池发热模型正确的前提下,仿真分析电池模组发热以及在模组间隙填充不同性能的导热胶温度场情况,研究不同导热胶在不同放电工况下的均衡散热效果,结果表明:使用热物性参数较好的导热胶可以明显降低电池的温升与温差,电池温度分布也更加均衡,起到一定的散热效果,这可作为纯电动汽车整个电池包均衡散热性能优化的基础。  相似文献   

11.
为提高户外基站备用电池组的工作性能、延长使用寿命,需要进行冷却和保温。将半导体制冷(TEC)与相变材料(PCM)保温相结合,对基站用48 V铅酸电池组进行热管理。模拟分析TEC的布置、制冷功率和环境温度对冷却保温效果的影响。TEC设置在电池组前后两侧、制冷功率为170 W时,可降低电池的温度、提高冷却阶段电池组温度场的一致性、延长保温时间。电池组经过连续的冷却保温过程,仍处于最佳工作温度范围,电池充放电时的最高温度可得到抑制。  相似文献   

12.
针对退役锂离子电池单体之间由于生产过程及后续工作环境的不同产生的不一致性差异对分选后电池成组性能的影响,提出一种基于放电平台期参数的锂离子电池分选方法.以磷酸铁锂电池为研究对象,通过研究电池组不一致性的影响因素确定聚类的指标,进而进行放电实验,得到电池的电压、电流、容量等时序数据,并通过固定电压窗口的方法得到放电平台高...  相似文献   

13.
锂离子动力电池受到的低温冲击通常发生在某一特定情况下,其低温应力与新电池存在一定差异。通过以35A·h复合材料电池为研究对象,针对电池充放电过程中存在的不同反应阶段,利用转化容量增量曲线划分电池工作区间,使电池在不同SOC区间循环老化,跟踪其电化学特性变化,分析衰退机理。在0℃环境下,采用C/3、C、3C/2、2C和5C/2电流依次对老化电池进行充放电冲击,分析基于不同衰退路径下的动力电池低温应力差异性。结果表明:动力电池在不同SOC区间循环使用会产生差异性明显的衰退路径,其低温衰退与其之前经历的循环衰退并不存在映射关系和一致性。同时得到的结论为动力电池成组应用的寿命分析和梯次利用电池的筛选配组提供依据。  相似文献   

14.
王正强 《电源技术》2017,(11):1584-1585,1592
采用烧结镍为正极,添加氧化亚钴和羰基镍粉的储氢材料为负极,聚乙烯(PE)/聚丙烯(PP)的复合物为隔膜,制备得到通信设备用富液式QNG90方形氢镍电池,对所得电池充放电时的温度变化及电化学性能进行测试,并与贫液式QNF90方形氢镍电池进行比较。当富液式电池以0.2 C充电6 h,温升为5.0℃;以1.0 C放电,温升为9.5℃。20℃下对电池进行倍率放电与低温放电测试结果表明,当富液式电池以10.0 C放电至0.8 V的放电容量为室温0.2 C放电容量的73.4%,-40℃下以0.2 C放电时容量为常温0.2 C放电容量的75.2%,50℃下满容量电池以1.436 V恒压浮充50 h,未出现热失控和电流失控,0.2 C充放电的循环次数超过1 100次。  相似文献   

15.
温度对锂电池的容量和充放电特性等关键指标有着重要的影响,对其进行研究可以为锂电池的实际使用和维护以及SOC估算提供依据。以航空钴酸锂电池为对象,通过实验研究其容量、充放电曲线在不同环境温度下的变化规律。结果表明:在环境温度高于20℃时电池容量变化不明显,但在环境温度低于0℃时,电池容量将快速下降。在低温环境下充电时,电池容量在平台区时变化很大,且上升速度明显大于在高温环境下。在低温环境下,特别在低于-20℃时,电池在放电过程中电压下降速度激增。放电初期,电池电压下降较快,进入平台区放电速度减慢,但一旦电池电压低于3.7V,电压急速下降。  相似文献   

16.
The secondary batteries for an electric vehicle (EV) generate much heat during rapid charge and discharge cycles above the rated condition, when the EV starts quickly consuming the battery power and stops suddenly recovering the inertia energy. During rapid charge and discharge cycles, the cell temperature rises significantly and may exceed the allowable temperature. We calculated the temperature rise of a small lithium‐ion secondary battery during rapid charge and discharge cycles using our battery thermal behavior model, and confirmed its validity during discharge cycle at current smaller than the discharge rate of 1C. The heat source factors were measured by the methods described in our previous study, because the present batteries have been improved in their performance and have low overpotential resistance. The battery heat capacity was measured by a twin‐type heat conduction calorimeter, and determined to be a linear function of temperature. Further, the heat transfer coefficient was measured again precisely by the method described in our previous study, and was arranged as a function of cell and ambient temperatures. The calculated temperature by our battery thermal behavior model using these measured data agrees well with the cell temperature measured by thermocouple. Therefore, we can confirm the validity of this model again during rapid charge and discharge cycles. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(3): 17–25, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20249 Copyright © 2006 Wiley Periodicals, Inc.  相似文献   

17.
为了快速有效地实现串联锂离子单体电池间的能量均衡,提出了一种基于Cuk斩波电路的双向双层桥臂的蓄电池组均衡器。此均衡器根据电池组的充放电状态采取两种不同的均衡策略:当电池组处于充电状态时,电池组中具有最高荷电状态的单体电池通过Cuk斩波电路被快速均衡放电;当电池组处于放电或静置状态时,电池组中具有最低荷电状态的单体电池通过Cuk斩波电路被快速均衡充电。均衡器拓扑电路原理简单、均衡电流连续、均衡电流可控性强、均衡效率高。最后对此均衡器进行了仿真实验,证明了此方案的可行性。  相似文献   

18.
为了降低电池内气压,避免电池过充电漏气,进行了几种不同材质的隔膜及不同电液量对GNYZ3板式蓄电池内气压影响的试验,确定最佳隔膜为维纶布,此时的合理电液量为电池电液量应控制在15.5~16 g;环境温度在15~25℃范围内,5小时率电流充电7 h或10小时率电流过充18h的方法进行过充电,电池内气压不会高于3.0 MPa,使用时环境温度在20~40℃范围内以5小时率电流充电7 h,电池内气压不会高于3.0 MPa。  相似文献   

19.
李胜辉  孙峰  冷雪  刘莉  沈丽 《电源技术》2017,(11):1547-1549,1580
锂离子电池组是电动汽车主要的动力来源,电池组的性能决定了整车性能。锂离子电池在使用时会有严重的发热情况,造成了电池组温度升高,并且各电池之间温度具有非均匀性,严重时会影响电池的使用寿命,产生故障甚至引发行车中的安全问题。以某电动车用锂离子动力电池为研究对象,对电池单体及电池组模块进行温度场分析,研究其动态变化规律,以得到其运行时的温度特性,为实际工程中电池组的设计及优化提供了理论依据。  相似文献   

20.
首先对电池的产热方式进行了分析,然后根据相变问题求解焓法模型以及相关热传导理论,建立了基于相变材料的方形单体电池散热三维热模型。在此模型基础上结合方形电池表面的外形结构,分析了不同相变材料结合方式,不同相变材料用量以及不同表面换热系数对电池工作温度的影响。研究表明:在电池四周包裹相变材料比只在两侧结合的方式具有更好的降温能力,但是两侧结合具有更小的温差;相变材料厚度3 mm或对流换热系数达到21 W/(m~2·K)时,可以使电池的工作温度始终低于50℃,但是继续增大数值取得的效果不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号