首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
采用传统氧化物法制备了Ni0.49-xZn0.398+xCu0.112Fe2O4(x=0,0.014,0.026,0.038,0.05)铁氧体材料,研究了主配方及烧结温度对材料电磁性能和显微结构的影响。研究表明,ZnO含量对NiZn铁氧体材料的起始磁导率μi、饱和磁通密度Bs、Q值和比损耗系数tanδ/μi影响较大;当x=0.026时,NiZn铁氧体材料的饱和磁通密度最高;饱和磁通密度随烧结温度先升高后降低,当烧结温度为1100℃时,晶粒尺寸分布均匀、结构致密性好,其饱和磁通密度达到最大。在本研究中,最佳工艺参数为:x=0.026,烧结温度1100℃。  相似文献   

2.
采用传统氧化物法制备了MnZn功率铁氧体,研究了CoO掺杂对MnZn功率铁氧体微观结构和磁性能的影响.结果表明,CoO掺杂导致密度增大,功耗降低,并改善其起始磁导率μi的温度特性.当CoO含量为0.3wt%时,试样晶粒尺寸大小均匀,结构致密,具有良好的综合性能:密度D=4.91g/cm3,起始磁导率μi=2768,饱和磁通密度Bs=519mT,剩磁Br=69mT,矫顽力Hc=9.2A/m,功率损耗Pcv<440kW/m3(15 ~ 120℃),起始磁导率的温度因数αF=4.8×10-7/℃(20~80℃).  相似文献   

3.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了烧结过程氧分压及热处理氧分压对于其电磁性能的影响。实验表明,烧结过程中的氧分压P(O_2)越高,材料中的Fe2+含量越低,烧结体晶粒越大;氧分压的最佳范围在4~7%附近,过高或过低均会降低材料的磁性能。对于因氧分压偏离最佳范围导致磁性能低下的MnZn烧结体,可以通过后续的热处理工艺调节Fe2+含量以恢复其磁性能。根据这些结果,综合烧结工艺和热处理工艺的优势,采用21%的氧分压烧结获得较大的晶粒之后再在0.1%的氧分压气氛中热处理的方法调节铁氧体的Fe2+含量,获得了25℃时μi=10600,Bs=427 mT,μi(200 kHz)/μi(10 kHz)=98%,综合性能良好的高磁导率MnZn铁氧体磁芯。  相似文献   

4.
根据高频开关电源变压器用PC44、PC50等功率铁氧体材料的高起始磁导率(μi)、饱和磁通密度(Bs)、低功率损耗(Pc)等特性要求,分别讨论了配方、添加物和烧结工艺等关键技术对该类材料制备的影响。  相似文献   

5.
利用氧化物陶瓷工艺制备MnZn功率铁氧体。研究了不同预烧温度下铁氧体粉料的相变及其对铁氧体结构和性能的影响。结果表明,当预烧温度升高至880℃时,粉料中生成了明显的尖晶石相Zn1-xMnxFe2O4。随着预烧温度的升高,烧结试样的密度(d)、起始磁导率(μi)、饱和磁感应强度(Bs)和电阻率(ρ)均先升高后降低,功率损耗(Pcv)先降低后升高,均在880℃预烧时达到最优点:密度、起始磁导率、饱和磁感应强度和电阻率分别达到最高值4.86g/cm3、2570、528mT和6.6?·m,功率损耗降至最低值369kW/m3。因此,在880℃下预烧的粉料活性适中,烧结后能获得均匀致密的微观组织和优良的电磁性能。  相似文献   

6.
采用氧化物陶瓷工艺制备了高频MnZn功率铁氧体,基于动态磁化理论和损耗分离方法,研究了烧结氧分压对材料显微结构、磁导率和损耗的温度特性的影响。结果表明,随着氧分压的增大,室温下MnZn功率铁氧体的密度d、平均晶粒尺寸D、电阻率ρ和起始磁导率μi逐渐减小,而磁滞损耗Ph和涡流损耗Pe逐渐增大,同时μi-T曲线的二峰位置和Ph-T曲线的最小值所对应的温度逐渐移向高温。相同氧分压烧结MnZn功率铁氧体的涡流损耗Pe和剩余损耗Pr均随温度升高而增大。在氧分压为2%时,高频MnZn功率铁氧体具有最优性能,室温下起始磁导率μi为1175,1 MHz/50 mT时20℃与100℃的损耗PL分别为359 kW/m~3和486 kW/m~3,3MHz/10mT时20℃与100℃的损耗分别为221 kW/m~3和301 kW/m~3。  相似文献   

7.
用氧化物陶瓷工艺制备高频MnZn功率铁氧体材料,在烧结升温、保温段采用五种不同的氧分压进行烧结.通过测试各样品的起始磁导率、功耗及饱和磁通密度、剩余磁通密度,确定较合适的升温烧结氧分压.结果表明,升温阶段、致密化区氧分压控制在0.1%~1%为宜,这为此类材料的成功量产提供指导.  相似文献   

8.
采用传统氧化物湿法工艺制备了NiO掺杂Mn0.72Zn0.20Fe2.06O4软磁铁氧体材料,研究了NiO掺杂对MnZn功率铁氧体显微结构及电磁性能的影响。实验发现,掺杂适量NiO的情况下,铁氧体晶粒生长均匀,具有较高的居里温度和饱和磁通密度。并且随着掺杂量的增加,在不明显影响最低损耗的同时,功耗谷点向高温方向移动。掺杂0.15wt%NiO,在双推板N2窑中烧结的Mn0.72Zn0.20Fe2.06O4功率铁氧体具有较好的综合性能:μi=2302,Pcv=338mW/cm3(Tp=100℃),Bs=492mT,TC=250℃。  相似文献   

9.
研究了Cu含量对NiCuZn(μi=1200)铁氧体材料磁导率和功耗Pcv的影响,并采用高纯度的原材料,严格控制主配方和生产工艺,制备出了高性能的NiCuZn铁氧体材料。实验表明,在6~8mol%的范围内,随着Cu含量的降低,磁导率略有上升;饱和磁通密度Bs逐渐增大,功耗Pcv显著降低。  相似文献   

10.
根据平板显示器对软磁铁氧体材料性能的要求,通过优化配方组成,采用TiO2-V2O5、Bi2O3等复合添加剂,针对不同原材料粉体采取的不同工艺处理技术,研制了在常温下起始磁导率(μi)为1200、饱和磁通密度(Bs)大于360mT、居里温度(TC)高于160℃以及具有较高电阻率的NiCuZn铁氧体材料,并已实现小批量生产.  相似文献   

11.
采用传统氧化物陶瓷工艺制备锰锌铁氧体,研究了主配方的氧化铁含量、烧结工艺等因素对材料微观结构和磁导率的影响。结果表明,主配方氧化铁含量在52.2 mol%时,可以获得较好的磁导率温度特性;烧结温度1380℃,保温8~12 h,有助于提高起始磁导率;晶粒直径25μm左右和致密的微观结构,可提高材料的起始磁导率。通过优化配方和制备工艺,开发出了宽温、高磁导率锰锌铁氧体材料RH15K,性能如下:起始磁导率μi:15000±30%(25℃,10 k Hz),μi5000(-40℃,10 k Hz),居里温度TC105℃。  相似文献   

12.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了配方中Ni(以NiO的形式)取代Mn对MnZn铁氧体微结构及磁性能的影响。结果表明,配方中Ni取代会造成磁导率下降、损耗增大,但适宜的取代量可以提高MnZn铁氧体材料的高温饱和磁感应强度,当取代量为3.5mol%时,MnZn铁氧体100℃下的饱和磁感应强度可以高达492mT。  相似文献   

13.
采用陶瓷工艺制备高频MnZn功率铁氧体材料,研究了MoO3添加对材料微结构和磁性能的影响。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)表征材料结构,用B-H分析仪测试材料磁性能,并对材料功率损耗进行分离。结果表明,适量添加MoO3可以有效改善材料的微观结构,提高致密度,提高材料饱和磁通密度和起始磁导率,降低功率损耗。功耗分离后发现,随着MoO3添加量的增加,磁滞损耗比例下降,涡流损耗所占比例上升。最佳MoO3添加量为0.01 wt%,获得低功耗的MnZn功率铁氧体,100℃、500kHz、50mT条件下功耗为86 kW/m3,起始磁导率约为1928,25℃下的饱和磁通密度为513 mT。  相似文献   

14.
采用氧化物陶瓷工艺制备2~4MHz高频开关电源用Mn Zn功率铁氧体,通过对铁氧体断面显微结构、密度和磁性能的测试,研究了TiO_2掺杂量对材料微观结构、磁导率和功率损耗的影响。结果表明,随着TiO_2掺杂量的增加,样品平均晶粒尺寸先减小后增大,磁导率单调减小,不同温度(25℃、100℃)下的磁心总功率损耗(激励条件3MHz,10m T、25m T)先减小后增大。说明TiO_2的适量掺杂可以改善高频Mn Zn功率铁氧体的微观结构,降低其功耗。  相似文献   

15.
铁氧体材料宏观电磁特性取决于材料的成分和微观结构.特定微观结构的获得取决于材料配方、制备工艺及掺杂.对于一定的基本配方,掺杂能够有效地改善材料的微观结构和电磁性能,因此,掺杂改性是铁氧体材料研究的重要内容.文章综合介绍了常见化合物、稀土氧化物和纳米氧化物等微量掺杂物的作用和对Mn-Zn功率铁氧体电磁性能的影响.根据目前的发展现状,指出了Mn-Zn功率铁氧体材料的研究方向.以期对功率铁氧体材料的微量添加研究提供有益的参考.  相似文献   

16.
采用传统氧化物陶瓷工艺制备Mn_(0.777)Zn_(0.133)Fe_(2.09)O_4铁氧体材料,研究了预烧温度对材料微结构和磁性能的影响。结果表明,随着预烧温度的升高,材料的密度(d)、起始磁导率(μi)和饱和磁感应强度(Bs)均先升高后降低,材料的损耗(Pcv)先降低后升高。当预烧温度为910℃时,材料具有最大的烧结密度、饱和磁感应强度、起始磁导率以及最小的磁芯损耗。  相似文献   

17.
为适应通讯网络变压器的需要,采用传统氧化物工艺,通过添加TiO2、Co2O3、CaO等杂质,开发了具有宽温低磁滞损耗特性的TH2Mn-Zn铁氧体材料及磁芯,以满足网络通讯变压器低信号失真特性的要求。测试了材料的磁谱特性、比损耗因子、磁滞常数温度特性等,从而说明TH2材料的典型磁性能。  相似文献   

18.
采用双层硅胶加盖不锈钢材质层压板的层压方法制备功率型低温共烧铁氧体(LTCF)变压器。通过断面显微结构、电感值及耐压的测试,研究了层压方法对其结构及性能的影响。结果表明,相对于传统的层压方法,新方法制作的变压器层压受力均匀、表面不平整度≤±5μm/10 mm,无凸起、分层,排胶烧结过程中未出现开裂、翘曲等缺陷,显微结构理想。变压器性能为,初级电感:≥60μH、次级电感:≥2.6 m H、漏感:≤35μH、耐压:≥1500V(DC),且满足高低温应用环境(-55~+85℃)下磁性能使用可靠性和环境适应性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号