首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为解决智能变电站现场站域测试时无线分布式数据的时间同步问题,提出了一种适用于无线数据通信的多终端同步控制策略。介绍了智能变电站的站域测试系统及其实现的关键性问题,说明了网络传输延时不确定对IEEE 1588网络时钟同步协议的影响,研究了基于单点对多点无线通信系统同步的样本滤波、同步校正、时域跟随等问题,并给出了实施方案。实验结果表明,无线通信下经同步控制后时间精度可达微秒级,能够满足智能变电站系统级测试对时间同步的需求。  相似文献   

2.
基于IEEE 1588标准的变电站同步网络的研究   总被引:2,自引:0,他引:2  
介绍了国内现阶段数字化变电站时钟同步技术的应用,比较了现阶段变电站时钟同步技术的技术特点。针对新型数字化变电站高精度时钟同步指标要求,引入能达到亚微秒级对时精度的IEEE 1588时钟同步对时技术,阐述了IEEE1588时钟同步技术原理。基于IEEE1588时钟同步技术,讨论了数字化变电站站内对时网络的3种配置方法。分析了IEEE1588对时技术用于区域电网的局限性,综合全球定位系统(GPS)对时技术和IEEE1588技术提出了一种现阶段最优化的变电站同步时钟网络配置方案。  相似文献   

3.
IEEE 1588同步时钟基于TCP/IP技术,采用变电站通信网络对时,受通信网络传输阻塞的影响,存在同步报文传输路径延时误差。文中分析了IEEE 1588时钟同步精度误差;提出了基于区分服务调度模型的同步报文路径延时误差修正方法,通过设置网络节点业务报文队列的优先级,建立了带宽调节因子和紧迫度机制,确定了同步报文的时延,并提出时钟发生器振荡频率的修正方法;实现IEEE 1588同步时钟误差的修正。搭建了高精度网络时钟硬件平台,并完成了测试。实验结果表明,该时钟实现了纳秒级网络对时,能够满足智能变电站IEC 61850标准对时间精度的要求。  相似文献   

4.
IEEE1588协议在合并单元中的应用与实现   总被引:2,自引:0,他引:2  
数字化变电站尤其是过程层设备对同步精度要求越来越高,文中提出应用对时精度达到亚微秒级的IEEE1588协议,实现合并单元的同步功能向12路电子式电压电流互感器发送同步采样命令,为实现IEC61850T5等级的对时精度提供了很好的技术支持。简要阐述了IEEE1588时钟同步系统的工作原理和时间戳标记的具体设计方法,给出了运用ARM系列STM32F107在过程层合并单元实现IEEE1588协议的过程,并对该方案进行了性能测试,验证了运用STM32F107能够实现IEEE1588网络协议的高精度对时,满足变电站过程层对时钟同步精度的需求。  相似文献   

5.
智能变电站IEEE 1588同步时延优化方法   总被引:1,自引:1,他引:0  
针对智能变电站时间同步过程中通信网络的路径时延抖动导致同步精度下降问题,提出一种基于IEEE 1588时间同步协议的时延优化方法。首先分析智能变电站环境下路径时延抖动同步误差过程,实现同步误差产生机理的量化分析;然后阐述所提出的同步时延优化方法,方法在IEEE 1588协议框架下实现从时钟的基本时钟补偿基础上,拓展时延测量机制获取路径时延抖动的时钟补偿最佳估计值,实现从时钟同步时间的二次时钟补偿,减少路径时延抖动对同步精度影响;最后以智能变电站中典型IEEE 1588协议端到端透明时钟同步模式搭建仿真实验验证所提方法。实验结果表明所提方法能够提高智能变电站中从时钟同步精度和稳定性。  相似文献   

6.
参考传统电力系统中时钟同步方法,提出一种基于IEEE1588的微电网时钟同步方法。详细阐述了IEEE1588协议的基本原理,并基于微电网时钟同步系统模型搭建了由根主时钟、子微电网控制器、逆变器和智能网关断路器组成的微电网时钟同步实验平台,采用2种不同的方法对同步精度进行测量,测量结果显示主从时钟的同步精度在10μs以下,满足IEC61850协议对时钟同步的精度要求。在500 k W微电网工程中添加了事件时序记录功能,实现时钟同步技术在微电网中的初步工程应用。对实验中存在的不足之处提出了相应的改进方法,以解决通信延迟问题提高同步精度。  相似文献   

7.
王家林  杨宣访  刘蕾 《电测与仪表》2020,57(20):129-133
针对IEEE1588协议基于网络进行时钟同步偏差较大的问题,提出一种改进IEEE1588协议的时钟同步方法,在分析IEEE1588协议的基础上,对影响同步精度的时钟偏差和频率偏差进行建模,利用二阶Kalman滤波算法对时钟偏差和频率偏差进行递推,并通过Allan方差验证噪声特性,不断修正时钟偏差。最后,在实验室环境下设计了三组测试方案对改进后的时钟同步精度进行测试,并比较改进后的同步方法与IEEE1588协议同步方法的精度,验证改进同步方法的有效性和优越性。  相似文献   

8.
为了满足船舶综合电力系统同步测控亚微秒级的精度要求,通过分析各种时钟同步协议的优缺点和传统时钟同步方法对船舶同步测量的局限性,提出一种基于IEEE1588协议的卫星时钟同步与时钟同步频率补偿算法相结合的混合时钟同步方案以实现同步测量。所提方案以环星型拓扑结构的交换式以太网为背景,基于集成IEEE1588协议功能的以太网收发器设计了同步测量节点,并研究了一种频率补偿算法,可以动态地对时钟节点的晶振频率进行补偿,使时钟具有良好的守时性,保证了主从时钟的偏差恒定。通过仿真分析和试验对同步偏差性能进行测试,结果显示同步精度维持在±200 ns以内,达到了IEC61850关于同步测量的标准,满足了船舶综合电力系统时间同步的需要。  相似文献   

9.
卢小龙 《电源技术应用》2013,(1):268-269,287
介绍了合并单元的同步方法和IEEE1588时钟同步系统的授时原理。利用卫星时钟和本地时钟互补的特点,把IEEE1588秒脉冲与本地晶振时钟相结合进行锁相处理产生高精度同步时钟,再将该时钟进行倍频处理后向高压侧设备发送同步采样命令。分析了异常情况时的处理方法,并针对合并单元进行组网。该方法理论上可以满足智能变电站对时钟精度的要求。  相似文献   

10.
针对IEEE1588时钟同步过程中存在时钟频率漂移问题,提出了一种基于滑模控制的新型时钟同步算法。首先根据主从时钟偏差与漂移的递推关系,建立系统状态空间模型;然后运用滑模控制缩小时钟偏差与时钟漂移;最后结合滑动平均滤波对实验过程中的频率抖动和随机误差进行优化。结果表明,基于滑模控制的时钟同步算法可有效抑制时钟漂移引起的时钟偏差线性增长,将时钟偏差控制在1μs以下,从而实现亚微秒级网络对时。相比传统IEEE1588协议同步方法,所提方法提供了更高的同步精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号