首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
在孤立交直流混合微电网中,对双向AC/DC换流器进行合理控制可以有效实现微网功率的协调分配并提高系统的抗外界干扰能力。将孤立混合微电网中的交流微网和直流微网等效为整合电源,分别给出双向AC/DC换流器交流侧和直流侧的有功功率下垂控制方程,进而提出基于全网功率成比例分配原则的双向AC/DC换流器外环功率控制策略,实现孤立混合微电网的功率平衡和自主分配;同时针对常规比例-积分(proportionalintegral,PI)内环控制无法获得理想的电压动态响应的问题,在对双向AC/DC换流器进行电压波动分析的基础上,提出一种抑制电压波动的双向AC/DC换流器改进内环控制策略,实现换流器电压对参考信号的无静差跟踪,提高下垂控制微电网系统的鲁棒稳定性。仿真结果验证了该控制策略的正确性和有效性。  相似文献   

2.
当前混合微电网中双向AC/DC变换器主要采用U/f控制,由这种控制策略以及交流子微电网的运行情况确定直流子微电网的输入输出功率,这对直流子微电网产生很大的影响。针对这种问题,将直流子微电网作为一个波动性微电源与负荷,双向AC/DC变换器采用直流电压控制,根据直流子微电网的运行情况,确定双向AC/DC变换器功率的流向与大小。为了更好地保证直流电压控制策略的实现,直流子微电网采用变功率控制策略,由此提出了基于变功率控制与直流电压控制的混合微电网的协调控制策略。最后在Simulink中建立上述控制策略的模型,并进行仿真分析。仿真结果证明:上述控制策略能够实现交直流混合微电网的稳定运行,以及混合微电网的平滑切换。  相似文献   

3.
为便于不同电压等级的直流负荷接入直流微电网,设计了基于双直流母线构架的直流微电网协调控制策略。双直流母线直流微电网由2电压等级不同的独立直流微电网通过双向DC/DC变换器连接构成。将锂电池超级电容组成的混合储能系统应用于直流子网中,并根据双向变换器两侧子网的电压–功率下垂特性,对两侧电压进行了归一化处理,提出了适用于连接2直流子网的双向DC/DC变换器下垂控制;最后,通过d SPACE验证了系统协调控制策略的可行性。实验结果表明,此控制策略可以根据2直流子网电压大小有效控制子网间的功率传输,实现了整个系统功率的平衡,提高整个系统的运行可靠性。  相似文献   

4.
为了实现交直流混合微电网的可靠并网,基于微电网中AC/DC双向功率变换器下垂控制策略和预同步工作原理,提出一种适用于混合微电网中连接交直流子网的AC/DC双向功率变换器的控制策略。孤岛/并网模式时采用双向下垂控制实现双向功率流动。在由孤岛模式转为并网模式时,利用消除dq轴电压偏差实现幅值与相位同步,无需通过锁相环获取相位信息,实现平滑并网。同时,针对微电网中由于不平衡负载导致的三相不平衡工况,采用正负序分别控制的方法实现了非理想工况下微电网的同步互联。仿真结果验证了该方案的可行性。  相似文献   

5.
现阶段,混合微网一般通过双向功率变换器(bidirectional AC/DC power converter,BPC)连接来实现能量交互。在孤岛模式下,双向功率变换器作为平衡器来保障子网供电质量。针对孤岛模式下混合微网的功率分配问题,提出一种基于下垂的双向功率变换器改进控制策略。该策略可根据子网容量成比例调配交直流子网间的功率流动。为了提高直流微网的动态响应效果,采用直流电压的平方代替直流电压作为参考值,使控制更具线性化。将上述控制策略在MATLAB\Simulink平台上进行建模仿真,结果验证了该方法的可行性。  相似文献   

6.
为了解决多子微电网型交直流混合配电系统功率分配以及交流子微电网母线电压偏差大的问题,提出一种灵活功率控制与电压抑制策略.首先分别推导了单个交流子微电网频率、直流子微电网电压与公共直流母线电压的关系,然后分析多个交直流子微电网之间的频率与电压关系,并利用此关系对交直流子微电网中储能单元的下垂控制进行改进,实现整个系统的功率互助及分配.另外,对双向AC/DC变换器电流内环控制进行改进,利用扩张状态观测器对扰动电流进行跟踪,并将跟踪得到的扰动电流引入双向AC/DC变换器电流内环中进行补偿消除,以抑制交流子微电网的电压波动.最后,在MATLAB/Simulink仿真平台中建立多子微电网型交直流混合配电系统模型,仿真结果表明所提控制方法可以实现交直流混合配电系统中子微电网间的功率互助,较好地维持交流子微电网母线电压和频率、直流子微电网电压与公共直流母线电压的稳定.  相似文献   

7.
针对交直流混联微电网这类新型网络的潮流分析问题,建立了Droop型分布式电源以及AC/DC逆变器并网稳态潮流模型,并根据并网点电压对称进行三相、单相并网模型的相序分量转换。利用序电流补偿法将AC子网解耦为三序网络且并行求解,显著减小了问题求解规模;进一步建立了AC/DC逆变器两侧交流频率和直流电压耦合关系,有效解决了两子网间功率平衡问题。在序分量体系下提出了适用于直流微电网多种方式接入的孤岛交直流混联微电网三相解耦潮流算法,基于IEEE等标准配电系统的修改算例,验证了所提算法的有效性、适用性以及高计算效率。  相似文献   

8.
针对传统的并联接口变换器控制策略存在功率分配精度低、惯性小以及循环功率等问题,提出了交直流混合微电网并联接口变换器的虚拟同步发电机(VSG)控制策略。将小交流电压信号源注入到直流子网的DC/DC转换器中,使直流子网的功率-电压下垂控制变为功率-频率下垂控制。将原本采集的局部母线直流电压变为全局直流叠加频率,从而将直流子网的叠加频率与虚拟同步机的虚拟频率差值作为VSG的机械力矩。通过与传统控制策略的仿真结果比对分析,验证了所提方法的有效性和优越性。  相似文献   

9.
在交直流混合微电网中,交流和直流子网之间由双向功率变流器(Bidirectional Power Con-verter,BPC)连接,实现子网之间的功率互动.本文提出了一种分散式经济运行控制策略,旨在优化微网中各个分布式电源(Distributed Generators,DG)的出力,减小总发电成本(Total Generation Cost,TGC).针对交流和直流子网中的DG,设计相应的微增率下垂控制,使得同一子网中各DG的微增率相等,根据等微增率准则,此时子网的TGC达到最小.针对BPC,设计互动功率经济优化控制策略,优化交、直子网间的功率交换,从而进一步减小TGC,在不依赖外部通讯的情况下实现交直流混合微电网整体经济优化运行.仿真验证了控制策略的有效性.  相似文献   

10.
基于模型预测控制理论,提出一种应用于交直流混合微电网的双向AC/DC变换器控制策略,用来平衡交直流子网间的能量流动,使系统能够安全可靠运行。为此,建立双向AC/DC变换器的动态模型,在变换器电压空间矢量有限的条件下,根据系统离散时间模型来预测系统下一采样时刻的输出值,利用价值函数确定开关管的状态。仿真结果表明,所提出的控制策略可行、有效。  相似文献   

11.
双向功率变换器是交、直流混合微电网中的关键设备。本文在分析低压微电网下垂特性的基础上,提出一种双向功率变换器自治运行控制策略,针对交、直流母线电压性质不同的特点,根据子网电压允许波动范围,分别对其进行了归一化处理,并以交、直流子网实时负载率相同为准则,设计了双向功率变换器有功-电压控制环。为使交流子网频率稳定,在充分利用双向功率变换器剩余容量前提下,设计了变换器无功-相角控制环。仿真和实验结果表明,所提出的控制策略能够实现交、直流子网间功率双向平滑传输,维持子网母线电压及频率稳定,确保低压交、直流混合微电网自治运行。  相似文献   

12.
交直流混合微电网是交流微电网与直流微电网的有机融合体,兼具交流微电网和直流微电网的优点,并为解决高密度分布式发电接入配电网的有效途径,交直流混合微电网潮流控制器(hybrid microgrid flow conditioner,HMFC)是其中的关键设备,用于连接交直流混合微电网的交流母线和直流母线,实现交流微电网和直流微电网的电能双向变换与潮流控制。该文分析了交直流混合微电网的运行特征,明确了交直流混合微电网体系结构,提出并网和离网2种模式下HMFC以不同母线占优运行的功能规范,并采用DIgSILENT/Power Factory仿真验证其功能的稳定性。  相似文献   

13.
针对孤立交直流混合微电网中双向AC/DC换流器在外界扰动下出现电压波动的问题,设计了一种应用于双向AC/DC换流器的母线电压扰动观测器,以实现在分布式电源出力和负荷功率变化等外界扰动情况下对系统扰动量的快速跟踪,且无需增加额外的电压或电流传感器,保证了交直流混合微电网内分布式电源和负荷的即插即用功能。进一步地提出了基于扰动观测器的孤立交直流混合微电网双向AC/DC换流器电压波动控制策略,以有效抑制暂态电压波动和冲击,提高了孤立混合微电网在不同扰动下的动态响应性能和鲁棒稳定性。在PSCAD/EMTDC平台上搭建了孤立交直流混合微电网仿真模型,通过在不同暂态过程下的仿真测试验证了所提方法的有效性和正确性。  相似文献   

14.
交直流混合微电网的直流母线电压的稳定控制对整个交直流混合微电网系统十分重要。针对交直流混合微电网中直流母线电压控制方式,提出一种实用、高效的交直流混合微电网直流母线电压自主偏差控制方法。在并网模式下,采用具有空闲模式下的直流母线电压下垂稳定控制方法,通过AC/DC变换器实现直流母线电压的稳定控制,避免了AC/DC变换器的频繁充放电操作;离网模式下,直流母线电压的稳定控制由接储能侧的DC/DC变换器控制。为了保证系统离网模式下可靠运行,直流母线侧可以接多路DC/DC储能类蓄电池,通过自主稳定控制既提高了分布式能源的利用率,又提高了空闲模式下电力电子设备的使用寿命。经试验验证,该方法具有很好的控制效果,为交直流混合微电网的发展提供了技术基础支撑。  相似文献   

15.
基于传统双环控制的三相AC/DC变换器因其能实现功率双向流动、交流侧单位功率因数运行而在交直流混合微电网中担当链接桥梁的作用。当混合微电网交流侧电压不平衡时,三相AC/DC变换器的直流电压将产生2倍于基波频率的脉动,并导致交流电流产生大量的3次谐波分量,严重影响微电网的运行。在同步旋转坐标下建立交流侧电压不平衡条件下的三相AC/DC变换器的数学模型,分析了系统在不平衡条件下的功率传输特性,改进了三相AC/DC变换器功率控制策略,同时利用超级电容快速充放电特性在直流母线接入一小容量的超级电容来平衡直流侧功率的二次波动。仿真和实验结果验证了所提策略的可行性。  相似文献   

16.
基于改进信赖域算法的孤岛交直流混合微电网潮流计算   总被引:1,自引:0,他引:1  
交直流混合微电网兼备交流微电网和直流微电网的优点,是未来具有发展前景的一种微电网形式。针对对等控制策略下的孤岛交直流混合微电网,考虑分布式电源和分布式储能装置不同的控制方式,基于交直流互联变流器标幺化方法的自治运行控制策略,兼顾交流子系统和直流子系统之间的双向功率交换,建立了对等控制策略下的孤岛交直流混合微电网潮流计算模型。为了提高现有潮流计算方法的收敛性,提出了信赖域半径收敛至0的改进信赖域算法求解上述模型。通过对12节点的孤岛交直流混合微电网的潮流计算,与BFGS(Broyden-Fletcher-Goldfarb-Shanno)信赖域算法及牛顿—拉夫逊法进行了对比,验证了所提算法的有效性和鲁棒性。  相似文献   

17.
《电网技术》2021,45(8):3105-3114
交直流混合微电网中,交流电压不平衡引起的接口变换器瞬时功率脉动以及单相交流负荷并入直流微电网导致的直流电压二倍频脉动,影响混合微电网正常运行。针对上述问题,建立了双向接口变换器ab坐标系下的数学模型,分析了不平衡工况下交流子网以及直流子网单相逆变负荷的二倍频功率传输特性,在此基础上,通过在双向接口变换器直流侧引入降压型波动功率补偿电路,详细设计了基于改进型双向接口变换器的交流不平衡电压及直流二倍频脉动电压统一控制策略。对补偿电路电容容量进行定量分析,使双向接口变换器可以在较小直流母线电容容量情况下,利用自身功率余量同时补偿交流不平衡电压与直流二倍频脉动电压,仿真证明了所提控制策略的有效性。  相似文献   

18.
交直流混合微网综合了交流微网和直流微网的优势,为高密度分布式能源接入配电网提供了新的有效途径。交直流混合微网中交直潮流断面由多台AC/DC双向换流器构成,在维持交流区和直流区的功率动态平衡、交流侧频率和直流侧电压恒定等方面起着关键作用。针对多台AC/DC双向换流器的并联运行,基于变步长自适应逆控制理论,提出了一种多台AC/DC双向换流器的分散协调控制方法。该方法兼具了下垂控制与自适应逆控制的优势,既可以使各双向换流器按照额定容量进行有功功率的协调分配,又可以实现对直流母线电压或交流区频率的零误差调节,并获得相较于自适应逆控制更优的动态响应。最后,结合国内首个商业化运营的交直流混合微网示范工程进行仿真实验,验证了所提控制方法的正确性和可行性。  相似文献   

19.
直流微网并网运行时,常通过多个双向DC/AC变流器实现与大电网的互联.为实现该工况下系统稳定运行并解决多台双向DC/AC变流器并联功率分配问题,提出了一种双向DC/AC变流器的交流功率-直流电压下垂控制方法.该方法通过测量变流器交流侧有功功率,按照预设下垂曲线调节直流侧电压指令值,实现直流微网与电网功率双向流动,以及多台双向DC/AC变流器的协调运行.其次,建立了所提控制方法的小信号模型,分析了下垂系数对系统稳态及动态性能的影响.最后,仿真与实验结果表明,所提控制策略可按照预设下垂曲线调节直流母线电压和进行多台双向变流器功率分配,快速响应上层调度指令以及直流微网内功率变化,具有较好的动稳态性能.  相似文献   

20.
为了减少功率损耗和确保独立交直流混合微电网稳定运行,设计一种新的基于混合储能动态调节的分布式协调控制策略。通过检测直流电压和交流电压频率,该策略对连接交直流微电网的双向AC/DC变流器输出功率进行动态调节。混合储能中采用下垂控制自动调节蓄电池的输出功率,同时超级电容器迅速提供负荷功率的高频分量,以减小负载突变对蓄电池和母线电压造成的冲击。此外,在逆变器的下垂控制器中引入电压前馈补偿量来减小交流负荷的电压波动。最后,利用Matlab/Simulink搭建了混合微电网仿真模型。仿真结果表明,在不同工况下,该分布式控制策略均能控制混合微电网稳定运行及电压稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号