首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry, they are not suitable for solar radiation measuring instrument test. Therefore, a deep research is carried out on solar simulators to test of solar radiation measuring instrument, so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer, it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench, which achieves different detection of solar radiation. After practical test, solar irradiation is within Φ60mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%; rotating angle precision is better than 0.09°. Then, solar simulator is used to carry out pyranometer sensitivity test, pyranometer directional response test, pyranometer tilt response test and non-linearity test for radiation instruments. Test results show that the solar simulator meets the testing requirements of solar radiation measuring instruments.  相似文献   

2.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products improvement,and is convened every two years.The purpose of the ICEMI is to provide excellent opportunities for scientists,engineers,and participants throughout the world to present the latest research results and to  相似文献   

3.
There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.  相似文献   

4.
The International Conference on Electronic Measurement&Instruments(ICEMI)is the world’s premier con-ference dedicated to the electronic test of devices,boards and systems----covering the complete cycle from designverification,test,diagnosis,failure analysis and back to process and design improvement,and is convened every twoyears.The purpose of the  相似文献   

5.
<正>Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products improvement,and is convened every two years.The purpose of the ICEMI is to provide excellent opportunities  相似文献   

6.
<正>Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products improvement,and is convened every two years.The purpose of the ICEMI is to provide excellent opportunities  相似文献   

7.
The International Conference on Electronic Measurement&Instruments(ICEMI)is the world’s premier conference dedicated to the electronic test of devices,boards and systems--covering the complete cycle from design verification,test,diagnosis,failure analysis and back to process and design improvement,and is convenedevery two years.The purpose of the ICEMI is to provide excellent opportunities for scientists,engineers,and  相似文献   

8.
正Qingdao,China 7.16-19,2015 The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

9.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

10.
With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performance of thyristor valves particularly designed for HVDC project plays an important role in the handover of products between the manufacturer and the client.Conventional test facilities based on philosophy of direct test cannot meet the requirements for modern thyristor valves.New test facilities with high ratings are necessarily built based on philosophy of synthetic test.Over the conventional direct test circuit,the later is an economical and feasible solution with less financial investment and higher test capability.However,the equivalency between the synthetic test and the direct test should be analyzed technically in order to make sure that the condition of verification test in a synthetic test circuit should satisfy the actual operation condition of thyristor valves existing in a real HVDC project,just as in a direct test circuit.Equivalency analysis is focused in this paper,covering the scope of thyristor valves' steady state,and transient state.On the basis of the results achieved,a synthetic test circuit of 6 500 A/50 kV for operational tests of thyristor valves used for up to UHVDC project has newly been set up and already put into service in Xi'an High Voltage Apparatus Research Institute Co.,Ltd.(XIHARI),China.Some of the results have been adopted also by a new national standard of China.  相似文献   

11.
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field’s peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.  相似文献   

12.
The current status and trend of CO2 emission from coal-fired power plants in China are introduced. Main flue gas decarbonization technologies and their prospective of applications in China are discussed in two separate parts-capture and sequestration. It is stated that the selection of CO2 capture and sequestration technologies relates closely with the geographical location of power plants, with the destination of CO2 being the key. Further, it is suggested that industrialized test centers or test platforms of national or industrial level should be set up.  相似文献   

13.
In order to investigate the influence of cross-linking byproducts on dielectric and mechanical properties of 110k V cross-linked polyethylene(XLPE)cable insulation,we selected the undegassed XLPE cable insulation which is heated at 70℃in laboratory for different duration in terms of heating time,to prepare XLPE samples with different mass loss ratio.We carried out Fourier transform infrared spectroscopy(FTIR)test,electric breakdown test at 50 Hz,pulsed electro-acoustic(PEA)measurement and tensile test for XLPE samples.In FTIR spectrogram,the characteristic absorption peaks were observed to appear at 1 680 cm-1 and 1 600 cm-1,which can be related to two kinds of cross-linking byproducts includingα-methylstyrene and acetophenone.The intensity of these absorption peaks decreases with the increase of mass loss ratio.It can be proposed that the mass loss of XLPE samples in the process of thermal treatment is caused by volatiliztion ofα-methylstyrene and acetophenone.Therefore,the change of mass loss ratio can reflect the change of content ofα-methylstyrene and acetophenone in the process of thermal treatment.The results of electric breakdown test showed that the reduction ofα-methylstyrene and acetophenone leads to the enhancement of electric breakdown strength at 50 Hz.PEA measurement results showed that heterocharge is produced and accumulated when cross-linking byproducts are present,whereas no heterocharge is found whenα-methylstyrene and acetophenone are absent.The formation of heterocharge is attributed to ionization of cross-linking byproducts under electric stress.Based on these results,it can be suggested that when AC electric field is applied on XLPE samples,the occurrence of ionization of cross-linking byproducts results in the increase of free carriers in XLPE insulation,leading to a lower electric breakdown strength.The results of tensile test showed that tensile strength is proportional to the mass loss ratio of XLPE samples,which suggests that cross-linking byproducts can reduce the tensile strength of XLPE insulation.  相似文献   

14.
In order to investigate the influence of cross-linking byproducts on dielectric and mechanical properties of 110k V cross-linked polyethylene(XLPE)cable insulation,we selected the undegassed XLPE cable insulation which is heated at 70℃in laboratory for different duration in terms of heating time,to prepare XLPE samples with different mass loss ratio.We carried out Fourier transform infrared spectroscopy(FTIR)test,electric breakdown test at 50 Hz,pulsed electro-acoustic(PEA)measurement and tensile test for XLPE samples.In FTIR spectrogram,the characteristic absorption peaks were observed to appear at 1 680 cm-1 and 1 600 cm-1,which can be related to two kinds of cross-linking byproducts includingα-methylstyrene and acetophenone.The intensity of these absorption peaks decreases with the increase of mass loss ratio.It can be proposed that the mass loss of XLPE samples in the process of thermal treatment is caused by volatiliztion ofα-methylstyrene and acetophenone.Therefore,the change of mass loss ratio can reflect the change of content ofα-methylstyrene and acetophenone in the process of thermal treatment.The results of electric breakdown test showed that the reduction ofα-methylstyrene and acetophenone leads to the enhancement of electric breakdown strength at 50 Hz.PEA measurement results showed that heterocharge is produced and accumulated when cross-linking byproducts are present,whereas no heterocharge is found whenα-methylstyrene and acetophenone are absent.The formation of heterocharge is attributed to ionization of cross-linking byproducts under electric stress.Based on these results,it can be suggested that when AC electric field is applied on XLPE samples,the occurrence of ionization of cross-linking byproducts results in the increase of free carriers in XLPE insulation,leading to a lower electric breakdown strength.The results of tensile test showed that tensile strength is proportional to the mass loss ratio of XLPE samples,which suggests that cross-linking byproducts can reduce the tensile strength of XLPE insulation.  相似文献   

15.
The International Symposium on Test Automation and Instrumentation (ISTAI) is sponsored by China Instrumentation & Control Society (CIS) and Beijing Information Science and Technology University.It is world's premier international symposium for automated test,control and instrumentation,and also the largest technical event specially dedicated to test automation & industrial innovation.The aim of ISTAI is to provide a forum for researchers,practitioners and developers to review current trends in this area and to present new ideas and new research directions.The symposium scope covers all practical aspects of the theory and methods of automation test,control system and instrumentation for industrial applications.  相似文献   

16.
The International Conference on Electronic Measurement&Instruments(ICEMI)is the world’s premier con-ference dedicated to the electronic test of devices,boards and systems--coveting the complete cycle from designverification,test,diagnosis,failure analysis and back to process and design improvement  相似文献   

17.
The International Conference on Electronic Measurement & Instruments (ICEMI) is the world's premier conference dedicated to the electronic test of devices,boards and systems--covering the complete cycle from design verification,test,diagnosis,failure analysis and back to process and design improvement  相似文献   

18.
In this work, chaos game optimization (CGO), a robust optimization approach, is employed for efficient design of a novel cascade controller for four test systems with interconnected power systems (IPSs) to tackle load–frequency control (LFC) difficulties. The CGO method is based on chaos theory principles, in which the structure of fractals is seen via the chaotic game principle and the fractals’ self-similarity characteristics are considered. CGO is applied in LFC studies as a novel application, which reveals further research gaps to be filled. For practical implementation, it is also highly desirable to keep the controller structure simple. Accordingly, in this paper, a CGO-based controller of fractional-order (FO) proportional–integral–derivative–FO proportional–integral (FOPID–FOPI) controller is proposed, and the integral time multiplied absolute error performance function is used. Initially, the proposed CGO-based FOPID–FOPI controller is tested with and without the nonlinearity of the governor dead band for a two-area two-source model of a non-reheat unit. This is a common test system in the literature. A two-area multi-unit system with reheater–hydro–gas in both areas is implemented. To further generalize the advantages of the proposed scheme, a model of a three-area hydrothermal IPS including generation rate constraint nonlinearity is employed. For each test system, comparisons with relevant existing studies are performed. These demonstrate the superiority of the proposed scheme in reducing settling time, and frequency and tie-line power deviations.  相似文献   

19.
In this work, chaos game optimization (CGO), a robust optimization approach, is employed for efficient design of a novel cascade controller for four test systems with interconnected power systems (IPSs) to tackle load–frequency control (LFC) difficulties. The CGO method is based on chaos theory principles, in which the structure of fractals is seen via the chaotic game principle and the fractals’ self-similarity characteristics are considered. CGO is applied in LFC studies as a novel application, which reveals further research gaps to be filled. For practical implementation, it is also highly desirable to keep the controller structure simple. Accordingly, in this paper, a CGO-based controller of fractional-order (FO) proportional–integral–derivative–FO proportional–integral (FOPID–FOPI) controller is proposed, and the integral time multiplied absolute error performance function is used. Initially, the proposed CGO-based FOPID–FOPI controller is tested with and without the nonlinearity of the governor dead band for a two-area two-source model of a non-reheat unit. This is a common test system in the literature. A two-area multi-unit system with reheater–hydro–gas in both areas is implemented. To further generalize the advantages of the proposed scheme, a model of a three-area hydrothermal IPS including generation rate constraint nonlinearity is employed. For each test system, comparisons with relevant existing studies are performed. These demonstrate the superiority of the proposed scheme in reducing settling time, and frequency and tie-line power deviations.  相似文献   

20.
This paper is concerning switching impulse air gap insulation characteristics of rod-to-plane and V-string 6-conductor bundle to tower body in ±800 kV transmission lines.The tests were performed in China Southern Power Grid Co.,Ltd.(CSG) Kunming outdoor UHV laboratory at an altitude of 2 100 m.The switching impulse strength performance were obtained at a rod-to-plane arrangement and a full-scale model of 6-conductor bundle to tower.The test gap length of the typical rod-to-plane arrangement is 1.5~10 m and 5.3~8.2 m for the conductor-tower model,and the range of test voltage is about 450~3 100 kV.The critical positive switching impulse strength of conductor-tower gap is 1 525 kV in the gap length of 6.2 m.Additionally,the influence of the wave front time(100~1 700 μs) on the 50% flashover voltage is discussed.According to the test data,the minimum air gap clearances of the conductor-tower model with V-insulators at the altitude of 2 100 m should be longer than 6.8 m(wave front time 250 μs) and 5.8 m(wave front time 1 000 μs),respectively.The results are useful to air gap insulation design in UHVDC systems with rated voltage of ±800 kV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号