首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
短间隙流注放电数值仿真方法研究进展   总被引:4,自引:0,他引:4  
流注放电是间隙放电研究的重要内容与切入点,仅靠实验手段仍然无法获得流注放电的微观机制及放电通道内的全部物理参数,因此,数值仿真成为推动流注放电理论发展的一种重要方法。文章阐述了短间隙流注放电仿真的流体模型及其假设,分析了数值仿真算法中的3个难点问题,即粒子输运方程的准确求解、不规则区域中泊松方程的快速求解以及光电离项的快速求解。在回顾流注放电数值仿真领域解决上述3个难点问题的历史过程与取得进展的基础上,提出了解决上述问题的可能途径与努力方向。  相似文献   

2.
大气压下气体放电通常表现为丝状放电形式。流注或先导放电是其气体击穿的起始阶段,相对于低气压下暗放电或辉光放电具有更复杂的演化特性。为了研究不同气体的流注传播特性,采用流体模型对1 cm平板电极中大气压下氮气、氧气,以及氮气混合20%、1%和0.01%氧气的双向流注传播过程进行了仿真计算。光电离作为源项加在流体模型中,在数值仿真时采用解多组Helmholtz方程代替Zheleznyak积分计算。仿真结果表明:氧气含量较低时,流注会出现分叉现象;氧气中流注发展速度较快;氧气中正流注通道半径较大。  相似文献   

3.
采用SF6/N2混合气体绝缘介质的气体绝缘金属封闭输电线路(GIL)作为电缆和架空线的有效补充,将在电力发展中起到重要作用。为更好地理解其放电特性,建立了同轴电场中流注电晕放电的二维流体模型,综合考虑了SF6/N2混合气体放电过程中空间光电离与阴极光发射作用,采用有限元-通量校正传输法(FEM-FCT)求解。仿真表明:流注电晕对空间电场有均匀作用,外施电压幅值低时流注电晕经过一段时间后会消失,幅值高时流注电晕容易发展为不稳定放电;SF6/N2混合气体起始放电时间较SF6气体迟,但绝缘性能较差;空间光电离作用强于阴极光发射的作用。  相似文献   

4.
利用粒子输运方程及耦合泊松方程,研究了短间隙中10%~90%SF_6/N_2混合气体在不同阶段的流注放电特性。针对流注头部粒子空间分布出现陡梯度问题,基于不均匀的三角元网格剖分,采用Euler-Taylor-Galerkin(ETG)格式对粒子连续性方程进行时间离散,利用通量校正传输法(FCT)对离散后的方程进行求解,可以明显提高计算准确度和减小数值扩散。基于以上算法,考虑电子与SF_6/N_2中性混合气体的电离、复合、吸附以及光电离等过程,对短间隙气体流注放电过程进行了仿真。仿真结果表明,初始场强的大小影响流注的发展,随着流注发展,流注头部空间电荷加剧了两极板间的电场畸变,间隙击穿时流注头部电子浓度达到10~(20)/m~3,最大空间场强达到114k V/cm;光电离对加速流注的形成和发展有很大的影响;仿真结果也验证了ETG-FCT法应用于气体放电研究的有效性。  相似文献   

5.
电晕特性是特高压直流输电线路设计的关键技术问题之一。电晕放电物理过程复杂,影响因素多,基于电晕放电物理过程建立数值模型进行计算是研究电晕问题的有效手段。电晕流体模型在电晕等离子的仿真计算中得到广泛的应用。大部分电晕流体模型的计算中使用Kaptzov假设作为边界条件,没有考虑二次电子发射机制,并且当电晕电流较大时,没有充分考虑的电子扩散、电荷复合和空间光电离等因素的影响。文中基于简化的电晕等离子体流体模型,进一步考虑电子扩散、电荷复合、空间光电离和二次电子发射机制提出完整模型,采用4阶龙格—库塔法对同轴圆柱模型的负极性电晕进行了仿真计算,分析了不同因素对计算结果的影响,探究了负极性电晕等离子体电荷密度和电晕场的分布规律。考虑二次电子发射对结果影响最大,但在180kV时差别也不超过2%。  相似文献   

6.
基于Helmholtz模型的流注放电过程光电离快速计算   总被引:1,自引:0,他引:1  
流注放电过程通常用流体模型来描述,它由粒子连续性方程耦合泊松方程组成,光电离作为源项加在电子和正离子连续性方程上。目前光电离一般用精度较低的空间均匀背景预电离代替或者用计算效率低的Zheleznyak积分模型进行求解。针对上述两种方法的不足,有学者用多组Helmholtz方程代替积分方程计算光电离,但并没有揭示此方法的物理意义和得到有效的边界条件。结合Penney和Hummert用离子室测量光电离的实验,若把吸收函数表示成指数和形式,即可得到Helmholtz模型的控制方程;根据辐射物理特性,给出了Helmholtz方程Sommerfeld远场辐射边界条件。将该方法应用于高斯辐射源和大气压下双向流注传播过程计算,并与采用其它边界条件的Helmholtz方法和Zheleznyak积分方法进行对比实验。仿真结果表明:采用Sommerfeld远场辐射边界的Helmholtz模型和采用Zheleznyak积分方法计算结果接近,但计算效率更高。  相似文献   

7.
均匀场中SF6二维流注放电模型的动态仿真   总被引:1,自引:1,他引:0  
王湘汉  汪沨  邱毓昌 《高电压技术》2008,34(7):1358-1362
为了对SF6气体的放电过程进行深入研究,使用含电子、正离子、负离子的连续方程对SF6气体的放电过程建模,通过耦合泊松方程进行了解决空间电荷对电场的畸变影响的研究。使用通量校正传输法(Flux-Corrected Transport)求解连续方程,并首次实现了二维情况下的SF6放电过程的动态仿真。模拟过程考虑了带电粒子及中性气体分子的电离、吸附、复合、扩散以及光电离等过程。从仿真结果可见,SF6放电时的电子崩转化成了正、负流注,并且光电离过程加速了流注的发展。通过仿真使得SF6流注放电机制的研究从定性变为定量,这对于进一步研究SF6及相关气体的放电机理具有重要意义。  相似文献   

8.
流注放电是一个复杂的非线性动力学过程,会受到众多因素的影响,目前针对放电微观过程受温度的影响机理研究较少。因此,该文利用流注放电的流体模型仿真研究了大气压下针板空气间隙的流注放电过程,提出流注放电流体模型中的温度控制关键参数体系及其计算方法。对比理论计算与实验结果,验证了该仿真方法的合理性。对大气压下不同温度变化的流注放电仿真结果表明,温度升高导致带电粒子运动速度加快,从而使流注发展速率显著升高、放电电流及电流变化率增大;温度升高对电离过程影响较小,且会使流注头部电子浓度及场强有下降趋势。该文提出的温度控制参数体系综合考虑了电离、附着与漂移过程受温度的影响,得到了温度对流注放电微观过程的影响机理。  相似文献   

9.
低SF6含量混合气体绝缘介质最有可能替代SF6气体应用于气体绝缘设备中。本研究采用有限元-通量校正传输(FEM-FCT)法求解低SF6含量的SF6/N2混合气体二维流注电晕放电的数学模型,考虑了空间电荷对场域的畸变作用,研究了SF6/N2混合气体二维流注电晕的放电特性,展示了流注电晕放电发展过程中间隙内部各种带电粒子浓度和空间电场的分布。仿真表明:棒-板间隙中空间光电离对流注电晕发展的影响强于阴极光发射;外施电压幅值小时,流注形成和发展速度较慢,流注电晕相对稳定。  相似文献   

10.
使用流体连续方程对SF6/N2混合气体放电过程进行建模,并采用通量校正传输法(Flux-Corrected Transport,FCT)首次实现了低SF6含量的SF6/N2二维流体模型的求解。结果表明,SF6/N2放电过程可分为电子崩和流注两个阶段;正负电荷分离后使得间隙电场发生了畸变,并导致等离子体更快地向两极发展;光电离对负流注的形成与发展造成了很大的影响。  相似文献   

11.
棒-板长间隙正极性流注生长概率模型及应用   总被引:5,自引:1,他引:4  
为研究长空间隙放电分散性和放电路径随机性,建立了结合传统流注放电理论和分形生长理论的正极性流注生长概率模型。首先基于经典的流注起始判据,计算了棒-板间隙流注起始电压;选择空间电位和电子崩形成时间作为流注生长控制变量,结合泊松方程、电荷连续性方程和欧姆定律描述流注通道内部的电荷转移,仿真流注的持续发展过程;当流注到达板电极后,选择放电树枝中电位梯度最大的通道作为最后的主放电通道。分析表明,该模型可描述流注区空间电荷随时间的积累过程,棒-板间隙击穿时间的分散性以及放电路径的随机性;由其计算得的棒-板间隙主放电通道分形维数与试验结果相吻合,同时基于该模型对棒-导线-板间隙放电选择概率分布的计算结果也与试验所得规律一致。  相似文献   

12.
1m棒–板间隙雷电冲击放电电场测量   总被引:1,自引:0,他引:1  
放电区域电场的定量测量是研究长空气间隙放电机理的重要手段,也是近年国内外研究的热点。简要介绍了自主研制的光电集成电场测量系统,并将其应用于棒–板间隙在正极性雷电冲击电压作用下流注放电区域电场的测量。首先测量未发生放电时棒–板间隙轴线上的几何电场,并与计算结果进行对比;其次,测量流注产生后放电区域内、外的电场强度,并结合高速摄像机拍摄到的流注放电图片对测量结果进行分析。测量结果为流注通道与空间电荷的物理模型建立提供了依据。  相似文献   

13.
对棒-板长空气间隙先导放电过程的空间电场分布以及带电离子浓度等特征参数进行仿真计算研究。建立棒-板长空气间隙放电的二维模型,导出流注-先导放电的二阶偏微分方程,通过有限元弱解形式(weak form)数值计算方法求解先导放电过程中产生的电子、正、负离子浓度与空间电场的大小。仿真结果显示:气体放电所产生的空间电荷对空间电场分布影响显著;间隙距离1.5 m的棒-板长空气间隙下,外加500 kV、250/2 500 ms正极性操作电压时的先导放电起始条件为,流注头部带电离子浓度达到4′1013 cm-3数量级,空间电场最低达到10 kV/cm;先导放电形成后,先导通道内电场约为1~2 kV/cm,先导起始时间在400 ms左右且以3′104 m/s速度传播;有限元弱解形式能有效消除计算离子流中的数值振荡,使偏微分方程求解迅速收敛。  相似文献   

14.
流注是长空气间隙放电的主要过程,其起始特性具有重要的理论价值与广泛的工程应用。以往对直流电压作用下流注起始特性的研究较多,对冲击电压特别是电压上升率较大的雷电冲击电压下流注起始特性研究很少。采用基于光电集成技术的高压侧电流测量系统与空间电场测量系统,对1 m棒–板间隙在正极性雷电冲击电压下流注起始特性进行研究,提出了新的流注起始观测手段,获得不同半径棒电极、不同电压上升率下的流注起始电压与场强,拟合得到考虑电压变化率的流注起始场强判据,并验证了所提出判据的广泛适用性。另外,还对正极性雷电冲击电压作用下流注起始时延的变化规律进行研究,定量测量了流注的起始时延,为研究流注起始时延的概率分布奠定基础。  相似文献   

15.
流注放电是气体间隙放电的重要阶段,流注放电的机理、仿真及实验研究是高压放电等离子体领域研究的重点之一,其中流注放电的实验研究是流注放电机理及仿真研究的基础。然而流注放电具有多时空尺度、多粒子碰撞、多物理场耦合等复杂特点,这对流注放电的实验观测提出了巨大的挑战。该文针对短空气间隙流注放电的实验观测,分别从短空气间隙流注放电实验设置和短空气间隙流注放电过程观测技术2个方面综述了国内外相关实验方法、平台及取得的研究进展。在此基础上,该文对目前短空气间隙流注放电研究所需要解决的关键问题和未来的发展趋势进行了探讨,认为未来短空气间隙流注放电实验研究进一步发展的关键在于建立更高精度与更高时空分辨率的多物理量同步观测系统,观测并分析单个流注发生发展的完整过程;探索新的实验手段和测量技术,获取电子平均能量等关键特征参数;深入研究数字图像处理技术,挖掘放电光学图像蕴含的更深层次的特征信息,进而完善对流注放电机理的研究。  相似文献   

16.
雷电引起的输电线路事故中因绕击导致的故障所占比例很大,一些学者认为空间电荷的影响是导致屏蔽失效的原因之一。为此,通过试验研究了直流电压下球头棒-板间隙的电晕电流,以此来衡量一定电压下球头周围空间电荷的量;并试验研究了正极性操作冲击下球头棒-板间隙放电击中点的分布规律,且与尖头棒试验结果比较。试验结果和仿真结果表明:与尖头棒相比,球头棒更容易吸引放电;球头棒周围电场畸变不严重,没有形成有效屏蔽层,从而使放电点更容易发生在头部。  相似文献   

17.
空气间隙的击穿电压与放电起始前的电场分布特征存在多维非线性关系。为了实现空气间隙的击穿电压预测,以电场特征集作为输入,以间隙在加载电压下是否击穿作为输出,采用支持向量分类机建立击穿电压预测模型。针对极不均匀电场空气间隙的击穿特性受电晕影响的问题,提出两种修正方法:通过增加受电晕影响的训练样本数据,提高预测模型的泛化性能;或基于"电晕云"的思想进行二次电场计算及特征量提取,对预测模型的输入特征进行修正。采用修正后的模型对极不均匀电场下棒-板间隙的工频击穿电压及棒-板长空气间隙的操作冲击放电电压进行预测,预测值与试验值吻合良好。该方法有利于减少试验次数,降低试验成本。  相似文献   

18.
降雨对"棒-板"短空气间隙正极性直流放电特性的影响   总被引:1,自引:1,他引:0  
针对目前我同500 kV直流输电线路凸现的雨闪问题,分析认为降雨对空气间隙直流放电特性有一定影响.为了确认降雨各因素对其影响程度,在人工气候室模拟降雨和现场自然降雨条件下,对0.1~0.6 m的棒-板短空气间隙正极性直流放电特性进行了系统的试验研究.结果表明:湿闪电压比干闪电压略高,小雨对放电电压的影响不明显;降雨变大...  相似文献   

19.
为了获得降雨条件下能预测空气间隙击穿电压的数学模型,根据在人工气候室试验得到的降雨条件下空气间隙击穿电压数据,运用神经网络原理,建立了降雨条件下的交流棒-板短空气间隙击穿电压的人工神经网络模型。利用该模型可以对一定降雨条件下的交流棒-板短空气间隙击穿电压进行预测,预测结果满足精度要求,同时,该文根据建立的人工神经网络模型模拟了降雨时单个及多个环境因素对空气间隙击穿电压的影响,并对模拟结果进行了分析,结果表明:大气压强一定时,随着降雨强度、雨水电导率的增加以及环境温度的降低,空气间隙的击穿电压随之降低;当降雨强度、雨水电导率和环境温度其中任一环境因素改变时,另两个因素对空气间隙击穿电压的影响程度也随之改变。人工神经网络模型对训练数据的依赖较大,对训练范围以外的数据预测精度较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号