首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
刘鉴  诸德宏  费城 《微电机》2020,(10):38-41
电动汽车永磁同步电动机( PMSM) 驱动系统运行在复杂多变的工况下,存在负载转矩扰动的问题。为减小负载转矩扰动引起的转速脉动,提高电动汽车抗干扰能力,提出了基于转矩前馈补偿的自抗扰控制(ADRC)策略。该控制方法使用自抗扰控制技术设计了速度控制器能实时补偿系统的扰动;并通过设计降维负载观测器来实时观测电机负载转矩变化,并将观测值反馈到电流环中,对负载扰动进行前馈补偿,增加了系统的抗干扰能力,提高了系统的鲁棒性。仿真结果表明,该方法可以增强系统的鲁棒性,提高系统的抗扰动能力。  相似文献   

2.
针对永磁同步电机速度控制中存在超调量大,抗负载扰动能力差,采用负载转矩补偿和自抗扰相控制结合的方案,给出一种改进的自抗扰补偿方式,不仅可以发挥经典自抗扰的优点,同时也对负载扰动进行补偿。通过对所给方法的仿真和试验结果分析可得,与传统的PID控制器相比,改进的线性自抗扰补偿控制系统具有较小的超调和稳态误差、较快的响应速度等性能,同时具有好的抗负载扰动能力,提升永磁同步电机的鲁棒性的同时使得动态性能与静态性能也提高很多。  相似文献   

3.
永磁同步电机(PMSM)运行过程中负载转矩以及转动惯量的变化对转速有较大的影响,结合自抗扰控制器(ADRC),通过对负载转矩和转动惯量辨识得到部分扰动的方法,设计了基于扰动补偿的永磁同步电机调速系统。利用辨识算法先辨识出负载转矩和转动惯量,然后利用辨识得到的信息表示出部分扰动项并补偿到自抗扰控制器扰动估计输出项中,使扩张状态观测器(ESO)只需观测出除负载转矩和转动惯量的扰动量,减小ESO观测扰动量,增加扰动量观测的精度,从而提高了转速环抗扰性能。最后通过仿真和实验验证了该算法的有效性。  相似文献   

4.
司利云  林辉 《微特电机》2007,35(11):35-38,41
将具有优良抗干扰性能的自抗扰控制器(ADRC)引入开关磁阻电动机的转矩控制系统中,回避了传统转矩控制器设计中对转矩逆模型精确建模的要求。将模型的不确定性及负载作为干扰,利用自抗扰控制器内部的扩张状态观测器观测系统的内外扰动项,并进行前馈补偿,从而实现转矩控制系统中转速环与电流环之间的精确解耦。仿真结果表明该控制系统具有良好的动、静态特性,对负载扰动、电机参数变化都具有较好的鲁棒性,可以实现高性能的转矩控制。  相似文献   

5.
设计了一种基于自抗扰控制器的永磁同步电动机直接转矩控制系统.该系统将不确定性负载扰动(外扰)和系统参数变化(内扰)视为一个综合扰动项,然后利用自抗扰控制器(ADRC)对综合扰动项进行观测和补偿.仿真结果证明,该系统不仅有效地抑制了不确定负载扰动的影响,同时对系统内部参数如电机转动惯量等摄动也具有较强的鲁棒性.该系统相比PI控制具有动态控制性能优越、抗扰能力强、控制精度高等特点.  相似文献   

6.
低速大转矩永磁同步电机调速系统在负载频变时存在动态响应慢的问题,本文分析了永磁同步电机数学模型、无传感器控制和自抗扰控制原理后,提出了一种基于滑模观测的自抗扰控制方法,并将其应用于矢量控制中,以提高永磁同步电机的运行性能。与传统滑模观测器相比,该方法的观测器是采用饱和函数sat作为开关函数,并引入锁相环得到转子位置估计值的方法,来减小估计误差。此外,再对滑模观测器的输出值进行动态跟踪与实时补偿来设计出适用于永磁电机的自我补偿型自抗扰控制器,并将该方法应用到永磁同步电机矢量控制系统中。仿真结果表明:采用自抗扰控制器的矢量控制系统具有更好的抗扰动能力和跟踪精度,电机满载启动时无超调,负载转矩突然变化时,系统能快速响应。  相似文献   

7.
在采用定子磁场定向的感应电机调速系统中,为提高控制系统的鲁棒性,抑制负载扰动的影响,提出了用自抗扰控制器来控制系统的转速环的设计方案,将负载扰动归到未知扰动中,用自抗扰控制来进行估计、补偿和控制。数字仿真证实了自抗扰控制器不仅能够提高系统的动、静态性能,而且能有效地抑制负载扰动,对负载扰动有较好的鲁棒性。  相似文献   

8.
基于负载转矩滑模观测的永磁同步电机滑模控制   总被引:11,自引:0,他引:11  
为了减小负载转矩扰动对永磁同步电机(permanentmagnet synchronous motor,PMSM)控制系统的影响,提高系统抗扰能力,提出一种以转速和负载转矩为观测对象的扩展滑模观测器,以实际转速与观测转速之差构成滑模面,负载转矩观测结果由负载转矩实际值和经过滤波后的抖振信号组成,当滑模运动发生后转矩观测误差渐进收敛到零。设计了基于指数趋近律的PMSM滑模控制(sliding-modevariable structure control,SMC)系统,将观测的负载转矩进行前馈补偿,以克服负载时变对控制性能的影响。实验结果表明,该观测器可准确地观测负载转矩,采用的前馈补偿方案对系统负载扰动有较强的鲁棒性,并且SMC固有抖振现象得到了有效抑制。  相似文献   

9.
在永磁同步电机(PMSM)滑模观测器(SMO)无速度传感器控制系统中,负载转矩的变化会对控制系统估计转速的性能产生影响。针对这一问题,提出了一种利用扰动观测器估计负载转矩并进行电流前馈补偿的方法。该方法首先通过SMO估计出的电机转速和交轴电流构造负载转矩观测器,然后再利用负载转矩估计值对负载扰动进行补偿。实验结果证明了所提出的方法不但能准确估计出负载转矩,而且减小了负载转矩变化对估计转速性能的影响,改善了系统的抗负载扰动能力。  相似文献   

10.
《微电机》2020,(1)
由于永磁同步电机传统矢量控制系统速度PI调节器存在超调量与快速性难以协调、抗干扰能力和鲁棒性差等问题,提出一种运用自抗扰(ADRC)与转矩前馈补偿复合控制的新方法。该方法采用简化的ADRC取代速度调节器中传统的PI算法,同时采用负载转矩前馈补偿对电流环进行优化,全面提高PMSM矢量控制系统双环的抗干扰能力,实现动态和稳态特性的优化;通过Simulink搭建控制系统模型并进行仿真,结论表明,运用自抗扰与转矩前馈补偿复合控制可有效提高PMSM调速系统的抗负载抗干扰能力,同时解决了传统PI控制器快速性与超调量之间的矛盾,验证了该方法的可行性。  相似文献   

11.
单个电流传感器实现的无刷直流电动机相电流检测   总被引:2,自引:1,他引:1  
无刷直流电动机的输出转矩与相电流大小成正比,通常为构成电流闭环及保护,需采用多个电流传感器,本文提出了的新的相电流检测方法,则只需一只电流传感器,实验验证了该方法是正确和有效的。  相似文献   

12.
针对无刷直流电机(BLDC)负载频繁改变导致电机调速性能差的问题,提出了一种基于负载转矩观测器的速度滑模控制方法。速度环采用滑模变结构控制方法,基于改进指数趋近律设计了速度滑模控制器;同时为了减小负载转矩扰动对电机运行状态的影响,基于龙伯格观测器设计了负载转矩观测器,通过观测器来估计实际的负载转矩并将观测器的输出前馈给速度滑模控制器来抵消负载转矩扰动的影响。为了验证提出方案的有效性,在MATLAB/Simulink仿真环境上搭建了仿真模型并进行了仿真分析,仿真结果表明基于负载转矩观测器和速度滑模控制器的无刷直流电机系统有着优异的性能,与传统PI控制相比,抗扰能力强、恢复时间短、转速响应快,证明了提出方案的有效性。  相似文献   

13.
本文介绍一种用于电动牙科座椅的稀土永磁无刷直流电机驱动系统,此系统将近年来发展迅速的无刷直流电机与DSP控制技术相结合,采用一片DSP控制器实现对两台稀土永磁无刷直流电机的控制,具有低成本、高性能的特点。  相似文献   

14.
针对传统无刷直流电机120°导通型控制方法存在转矩脉动大,不能适应高精度高稳定性要求的缺点,提出了一种新的广角波控制方法,通过控制相电压使相电流达到准正弦波。与传统控制方法相比,采用广角波控制后转矩脉动从14%下降到3.4%,出力增加了3.5%,而且可以利用非导通相检测反电势过零点,实现无位置传感器控制。广角波控制不但具有转矩脉动小、出力大、控制简单等优点,而且实现了无位置传感器控制,适用于高性能场合。  相似文献   

15.
新型横向磁通永磁电机无位置传感器控制   总被引:1,自引:0,他引:1  
分析了新型横向磁通永磁电机的无刷直流运行特点,针对常规相电压法应用于该新型电机时会引入附加检测误差问题,深入分析其产生机理,并结合提前换相方式提出了相应的相位补偿方案以实现正确换相.借助有位置控制器实验首先验证了附加检测误差之存在,并测定了其与负载转矩间的定量关系.在此基础上,进一步利用dSPACE搭建无位置传感器控制系统,对检测误差补偿前、后的运行性能进行实验对比.实验结果表明,与常规相电压法相比,所提出的相电压法改进方案有效提升了电机负载能力,且运行结果与有位置传感器运行时也基本一致.  相似文献   

16.
卢小锦 《防爆电机》2012,47(1):28-31
无刷直流电机继承了直流电机运行效率高、调速性能好等优点,同时克服了直流电机电刷带来的噪声、火花等缺点,在诸多领域得到广泛应用。为改善无刷直流电机控制系统的性能,研究模糊自适应PI控制器在无刷直流电机控制系统的应用。系统以TMS320F2812数字信号处理器为控制器设计了控制系统硬件,基于DSP/BIOS嵌入式操作系统开发了系统软件,实现了对无刷直流电机的控制。实验表明,系统具有良好的鲁棒性、可靠性、实时性,且系统的升级、扩展便捷简单。  相似文献   

17.
俞斌 《江苏电器》2008,(7):33-37
以无刷直流电动机(BLDC)为控制对象,应用DSP为微处理器进行了无刷直流电动机控制系统的软硬件设计。无刷直流电动机控制系统是具有数字化特点的电动机控制系统。通过数字信号处理器与相关模拟电路的组合,成功地实现了对电机控制的数字化处理。仿真实验表明,控制系统满足了无刷直流电动机高性能伺服控制所需参数的准确性与实时性要求。  相似文献   

18.
鲁明 《微电机》2011,44(7):84-87
绝大多数的无位置传感器无刷直流电机位置检测方法都是基于全桥驱动电路进行设计的。半桥驱动电路结构简单、体积小、功耗低、易于控制,亦得到了广泛应用。该文针对带有电压斩波器的半桥驱动电路,给出了一种改进的端电压反电势位置检测方法,该方法巧妙地解决了PWM开关干扰和换相干扰对位置检测的影响,无需对端电压进行滤波或采样保持,直接通过电压比较和逻辑处理即可检测位置信号,无滤波器延时,检测精度高,实现简单。在Matlab环境下建立了仿真模型,验证了该方法的可行性和有效性。  相似文献   

19.
Abstract

The design of an Active Disturbance Rejection Controller for the Brushless DC motor (BLDC) that compensates load torque variations in the rotor shaft without the measurement of the rotor shaft speed is presented. The reconstruction of the unknown load and motor speed is accomplished by the combination of a generalized Proportional Integral Control (PI) and a Luenberger observer, while the stator current regulation is designed around a passivity based controller. Using parameters of a commercial motor designed for a small electric vehicle under different driving conditions, numerical simulation results are included that validate the effectiveness of the proposed scheme both in terms of transient response to changes in set points and in tracking variable speed references.  相似文献   

20.
This paper proposes a sensorless drive system for Brushless DC (BLDC) motors using a Digital Phase‐Locked Loop (DPLL). The Back Electromotive Force (BEMF) voltage is measured from the motor winding to determine the permanent magnet rotor position using the DPLL, and Pulse Width Modulation (PWM) limits the motor current to control the speed of BLDC motors. The proposed method can drive BLDC motors using an open‐loop control without stepping out. Also, the proposed method is compared experimentally with a control method that uses Hall sensors. Experimental results for the BLDC motor show the effectiveness of the proposed method. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 142(1): 57–66, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10074  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号