首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
本文应用ASED-MO方法,计算、研究了K在Ni(100)、(110)、(111)、Cu(100)、(110)及Fe(100)表面的化学吸附状况,包括不同吸附位的吸附能、吸附键长,K原子与衬底之间的电荷转移等;同时,对K原子在这些表面的扩散激活势垒高度、扩散系数和扩散路径也进行了计算分析。  相似文献   

2.
利用基于密度泛函理论的第一性原理方法计算并分析四种不同晶体学位向关系的Ag/Ni复合材料的界面能量和电子结构。结果表明:Ag(100)/Ni(100)和Ag(110)/Ni(110)界面的结合强度和稳定性高于Ag(110)/Ni(100)和Ag(111)/Ni(100)界面;界面区的原子成键作用以第一层原子为主,界面处Ag原子和Ni原子之间形成共价键,Ag(100)/Ni(100)和Ag(110)/Ni(110)界面的原子成键能力较强,易于形成稳定的界面结合。  相似文献   

3.
用第一性原理的密度泛函理论分析了Sn吸附在Ni (100)表面的几何结构和稳定相吸附前后的功函变化情况。能量计算表明最稳定相是0.5 ML (monolayer)的Sn替代Ni (100)表面最外层原子形成c (2×2)结构的合金相,皱褶幅度为0.049 nm,与通过低能碱金属离子散射法和低能电子衍射法(LEED)所得到的实验值(0.044±0.005 nm)以及全矢量线性平面波法所得理论值(0.036 nm)吻合得较好,但与三维电子全息图所得值(0.09 nm)和Castep程序所得值(0.018 nm)相差很大,Sn在Ni (100)表面吸附前后的功函变化值为0.31 eV,表明电荷从底物移向吸附物。  相似文献   

4.
本文用EHMO法确定了Mo(100)和W(100)面吸附噻吩的最优几何构型,结合能,净电荷分布等。同时分析了吸附体系的成键特征,结果表明:噻吩的硫原子键合到四重轴空位上,且到第二层金属原子的距离为0.133nm,噻吩分子的π轨道与顶层金属成键。同时分子倾斜平面与金属面法线成18°定位,所得的吸附构型与实验基本一致。  相似文献   

5.
采用基于第一性原理的密度泛函理论在原子尺寸上计算研究了油酸离子在锡石(100)表面的吸附机理.H_2O,OH~-和OL~-在锡石(100)表面上的吸附能分别是-124.90,-135.42和-195.29kJ/mol;吸附过程中羧基中的2个O原子(O1,O2)与锡石表面上的2个相邻的Sn原子(Sn1,Sn2)键合形成1个五元螯合环;Mulliken电荷计算以及差分电荷密度分析显示,在成键过程中Sn1,Sn2原子分别失去0.10,0.11单位的电荷,O1,O2原子分别得到0.01,0.09单位的电荷;生成的2个化学键O1—Sn1,O2—Sn2的Mulliken布居数分别是0.16,0.26.以上计算结果表明,H_2O和OH~-可以自发吸附在锡石表面上使其亲水并荷有负电;油酸离子在(100)表面上的作用最强,可以取代表面上的H_2O和OH~-;O1—Sn1和O2—Sn2两个化学键的布局数较低且生成过程中伴随着原子间的电荷转移,说明O1—Sn1键和O2—Sn2键为离子键,油酸离子在锡石(100)面上的吸附为伴有取代作用的化学吸附.  相似文献   

6.
运用第一性原理,计算并分析了氧分子在Ag(111)表面吸附的结构和电子态,分别计算了顶位,单桥,双桥,谷位四种吸附结构,以及在上述结构下Ag(111)表面的弛豫特性、吸附能量、功函数等一系列物理量.研究表明,双桥位吸附为最佳吸附位,其O-O键长最大,吸附能最低,达到-4.111eV;因O2吸附位置的不同而导致每层Ag原子层距的不规律变化;O2在Ag(111)上成1πg*健.  相似文献   

7.
利用DFT(密度泛函理论)方法,对原子簇NiFeB_2的10余种可能构型在单重态下进行优化计算,分析比较了优化结果的能量、成键、电荷分布情况及不同构型的催化性能。结果表明:原子簇NiFeB_2以B-B键较长的三角锥形1构型最稳定,是原子簇NiFeB_2最有可能存在的构型,B-B在Ni-Fe异侧的平面四边形2构型次之;Ni-B,Fe-B原子问有强烈的成键作用且Fe-B间作用力比Ni-B间作用力大;各构型中电子由B转向Ni,Fe;在形成原子簇NiFeB_2的过程中Fe,B原子的所有轨道均参与成键,Ni原子的4p,4s在其成键中起主要作用;除了B-B键较短的三角锥形3构型外的其它构型中Fe原子的催化活性高于Ni原子,B-B键较短的三角锥形3构型和直线型4构型可能具有较好的催化性能;在催化加氮和加氢上直线型4构型具有较好的催化活性。  相似文献   

8.
基于密度泛函理论建立金属Co掺杂的铁基载氧体的微观模型,探究掺杂Co后模型表面的电子结构及反应特性的变化。首先,采用Material Studio软件中CASTEP模块构建并优化Fe_2O_3(104)的平板模型;其次,以Co原子分别替换模型表面不同配位数的Fe原子(Fe5f,Fe6f和Fe7f),构建Co在表面不同Fe原子位的掺杂模型(Co–Fe_2O_3(104));最后,计算纯净模型和掺杂模型的表面能、掺杂结合能、态密度以及掺杂位点原子的键长、键角和原子间距离等参数,考察CO在Fe_2O_3(104)和Co掺杂的Fe_2O_3(104)表面的等温吸附特性,并以CO分子为探针测试Co掺杂模型和纯净模型表面的氧化反应特性,获取反应路径、过渡态和反应活化能等信息。几何优化结果得到Co掺杂模型的稳定性顺序是:Co5f–Fe_2O_3(104) Co6f–Fe_2O_3(104) Co7f–Fe_2O_3(104),对应的结合能分别为–0.399 eV、–0.215 eV和0.487 eV,Co在Fe5f和Fe6f位的掺杂是放热过程,并且在Fe5f原子位的掺杂时放热较多,而在Fe7f原子的掺杂属于是吸热反应;Co掺杂改变了掺杂位点相邻O原子的平均键长LO-M(M代表Fe或Co),其中Co替换Fe7f后相邻O原子的LO-M增加了0.004 4 nm;掺杂Co后模型的总态密度(DOS)均向费米能级(0 eV)方向移动,在–8 eV~0 eV能量范围内离域性增强,而且Co5f–Fe_2O_3(104)模型体系靠近费米能级左边的填充态能量高于其他模型。等温吸附表明Co掺杂可以提高CO在模型表面的吸附量,并且存在吸附两种方式:–2.0 eV附近的峰为CO模型表面碱性位点的吸附峰,–0.75 eV附近的峰为CO在非碱性位点的吸附峰。CO在Co5f–Fe_2O_3(104)表面的吸附能(–0.851 eV)最大,而在Co7f–Fe_2O_3(104)表面的吸附需要外加能量(0.386 eV),CO在Co6f和Co7f掺杂位吸附的键长(LCO)比纯净模型表面的分别增加了0.000 4 nm和0.001 1 nm,表明Co掺杂表面对CO分子的活化作用较大;过渡态分析表明CO在Co掺杂表面氧化生成CO2的反应活化能均明显下降,其中CO在Co5f–Fe_2O_3(104)表面生成CO2的活化能最低,比在Fe_2O_3(104)表面的减少了0.518 eV,且相应的反应能增加了0.445 eV。研究表明,Co与Fe在其氧化物中成键结构不同,导致掺杂后模型表面的悬键增多,表面能增大,态密度向费米能级方向移动,提高了Fe_2O_3(104)表面活性,并且Co在低配位数Fe原子位的掺杂更有利于降低氧化CO的反应活化能。因此,通过掺杂金属Co提高铁基载氧体反应活性是可行的,其改性效果与掺杂活性成分的特性和掺杂方式有密切的关系。  相似文献   

9.
加氢精制过程中,有机含氮化合物的存在会使得贵金属催化剂或酸性催化剂中毒,同时抑制加氢脱硫(HDS)催化剂的活性,因此研究含氮化合物在催化剂表面的吸附行为有助于了解含氮化合物对HDS反应的作用机理.本研究构建一个周期性的镍钼硫(NiMoS)催化剂超晶胞模型,应用密度泛函理论的方法计算了平行吸附和垂直吸附状态下的吡啶、喹啉、咔唑和吲哚在NiMoS催化剂表面的吸附构型和吸附能.结果表明:碱性分子吡啶和喹啉通过Ni-N键吸附在催化剂的表面上,主要表现为垂直吸附;而非碱性分子吲哚通过吡咯环的β-C键吸附在催化剂表面上,咔唑则主要通过苯环吸附在催化剂表面上,两者均以平行吸附为主.比较两类不同吸附构型的吸附能发现,在NiMoS催化剂表面碱性氮化物的吸附能比非碱性氮化物的吸附能高.氮化物在催化剂表面的吸附过程为放热过程.  相似文献   

10.
针对氢在MgO(111)表面的吸附问题,结合基于密度泛函理论的第一性原理方法,对氢在MgO(111)表面的势能面和4种可能吸附位置及2种不同吸附方式的能量进行了计算,并对吸附H原子过程中的电荷转移情况进行了研究.研究表明,H2分子在MgO(111)表面垂直吸附时均为物理吸附,最优吸附位置为fcc,而平行吸附时均为化学吸附;H原子在Mgo(111)表面的hcp和on-top吸附位置处的吸附能相差不超过0.1 eV;电荷密度计算观察到吸附H原子后,与H原子最近邻的Mg原子表面发生了电荷转移.  相似文献   

11.
以松树锯末为吸附剂,研究其对水中Pb(II)和Ni(II)的吸附性能,研究了锯末用量、搅拌速度、溶液初始pH值等对吸附效果的影响及其吸附动力学和热力学性能。研究结果表明,锯末对Pb(II)和Ni(II)具有良好的吸附能力。锯末对Pb(II)和Ni(II)吸附过程均符合拟二级吸附动力学模型(R2≥0.997 7),锯末吸附Pb(II)和Ni(II)的活化能分别为9.808 7 kJ/mol和2.859 4 kJ/mol;锯末对Pb(II)和Ni(II)等温吸附符合Langmuir模型(R2≥0.999 2)。热力学研究表明,锯末对Pb(II)和Ni(II)的吸附是自发的放热过程。  相似文献   

12.
壳聚糖对镍离子(Ⅱ)的吸附性能研究   总被引:1,自引:0,他引:1  
用壳聚糖对镍离子(Ⅱ)的吸收条件进行研究,探索脱乙酰度、粒度大小,溶液的pH值和镍离子(Ⅱ)起始浓度等方面对壳聚糖吸附性能的影响。结果表明:壳聚糖对镍离子的吸附具有Langmuir吸附特征,其吸附最佳条件是壳聚糖脱乙酰度大于90%,镍离子(Ⅱ)溶液pH值为7.5-8.0。  相似文献   

13.
采用微乳液快速共沉淀法制备了掺杂Co非晶态氢氧化镍超细粉体样品材料,对其晶态、结构形貌进行了表征分析,研究了材料合成条件对其充放电等性能的影响,讨论其相应的作用机理,并测定了合成掺杂材料的循环伏安特性.所制材料样品的氧化还原可逆循环性和稳定性好:样品电极在恒流100 mA/g下充电4 h,50 mA/g放电,终止电压为1.0 V时,放电电压稳定于1.240 V,放电比容量达317.75 mAh/g,电化学活性较高.  相似文献   

14.
亚硝基R盐-吐温80-盐水体系萃取分离微量钴镍   总被引:4,自引:0,他引:4  
在pH为5.0~7.0的缓冲溶液中,Co(Ⅱ)和Ni(Ⅱ)均与亚硝基R盐形成稳定的配合物.在吐温80-硫酸钠液一固萃取体系中,都能被吐温80固相萃取.加入HCl提高溶液的酸度.Co(Ⅱ)进入吐温80固相被萃取,而Ni(Ⅱ)留在水相不被萃取,从而实现两者的分离.通过摩尔比法和连续变化法测定了吐温80固相中,Co(Ⅱ)与亚硝基R盐形成1:3的配合物.  相似文献   

15.
研制了一种环境友好型金属螯合剂.以葡萄糖为原料,经过胺化、亲核加成等步骤合成了一种含硫改性葡萄糖,命名为二硫代氨基甲酸改性葡萄糖(简称DTCG).采用了紫外分光光度法研究了DTCG与Cu(Ⅱ)和Ni(Ⅱ)的络合性能.在紫外光谱中,DTCG分别在257 nm和285 nm处出现两个最大吸收峰.DTCG与Cu(Ⅱ)和Ni(Ⅱ)形成配合物后,分别在437 nm和325 nm处出现一个新的最大吸收峰.在0.1 mol/L,硼砂缓冲溶液中,DTCG-Cu(Ⅱ)配合物的稳定常数远大于DTCG-Ni(Ⅱ)配合物.  相似文献   

16.
17.
Al(OH)3掺杂非晶态氢氧化镍的制备及其电化学性能   总被引:4,自引:0,他引:4  
采用微乳液法合成了Al(OH)3掺杂非晶态Ni(OH)2粉体.研究了温度、pH值和掺杂剂的含量等各种因素对其电化学性能的影响并分析了其作用机理.实验表明样品制备的工艺条件为t=50℃、pH=12、 Al(OH)3掺杂含量为5%时,样品电极容易活化,循环性能较好.采用以100 mA/g恒电流充电4 h,以50 mA/g恒电流放电,终止电压为1.0 V的充放电制度,其比容量达346.1 mA·h/g,放电工作电位平稳于1.24 V.  相似文献   

18.
研究了由Co取代Ni位置Ni(OH)2电极,由χ射线衍射测定了其结构与α-Ni(OH)2相同,且能在碱液中电化学循环时稳定存在,放电结果表明,充放是循环过程中,电子转移数目大于1(不同于以往在Ni(Ⅱ)与Ni(Ⅲ)间进行),在本实验中最高可达1.38。实验制得的电极和β-Ni(OH)2电极相比,具有较小的界面转移阻抗和较高的充电效率,且具有良好的机械性能,本文还对实验结果和可能的机理进行了简要的分  相似文献   

19.
以苯乙烯-丙烯酸共聚物(PSA)乳胶粒为模板,分别制备了结构新颖的α-Ni(OH)2和Ni O的空心球壳。在适宜的条件下,首先在PSA乳胶粒表面生长一层Ni(OH)2,制得核壳结构的复合微球。用有机溶剂溶去模板得到Ni(OH)2空心球壳;在空气中焙烧除去模板,得到的是Ni O空心球壳。经物相分析表明壳层是α-Ni(OH)2。用TEM、SEM对核壳结构微球和空心微球的形貌和微结构进行分析。结果表明,壳层是由片状的Ni(OH)2纳米晶构筑而成,焙烧后得到的Ni O空心球壳是由片状的Ni O纳米晶构筑而成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号