首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对家庭环境中服务机器人物品的抓取问题,提出一种改进的基于位置的视觉伺服抓取算法。首先,利用Naomark标签完成对物体的快速识别,并通过世界平面单应矩阵分解对物体的位姿进行估计;然后,对NAO机器人的机械臂进行运动学建模,并分别设计单臂和双臂抓取的视觉伺服控制律;最后,为进一步提高抓取的稳定性和鲁棒性,对末端执行器进行路径规划。实验结果表明,本方法能够快速、稳定地抓取目标物品。  相似文献   

2.
针对家庭环境中服务机器人物品的抓取问题,提出一种改进的基于位置的视觉伺服抓取算法。首先,利用Naomark标签完成对物体的快速识别,并通过世界平面单应矩阵分解对物体的位姿进行估计;然后,对NAO机器人的机械臂进行运动学建模,并分别设计单臂和双臂抓取的视觉伺服控制律;最后,为进一步提高抓取的稳定性和鲁棒性,对末端执行器进行路径规划。实验结果表明,本方法能够快速、稳定地抓取目标物品。  相似文献   

3.
针对基于视觉的机器人目标抓取问题,构建一个基于图像的单目视觉伺服系统.预先建立基 于图像雅克比矩阵的模型,在明确考虑目标可见性约束及机器人执行器约束的前提下,将预测控制 算法引入到机械臂的视觉伺服控制中,基于视觉特征的运动预测设计一个简化的多变量机械臂视 觉伺服控制器,用以实现对机械臂末端位姿的控制.借助NAO 机器人平台,利用机器人自带的 Naomark标签进行物体的快速识别,并应用上述基于视觉反馈的机械臂预测控制方法实现NAO 机器人手臂控制.实验结果验证了方法的可行性,算法简单易于实现,且控制精度令人满意.  相似文献   

4.
基于光轴约束的机械臂运动学标定方法   总被引:1,自引:0,他引:1  
为了提高机械臂的绝对定位精度,本文提出一种基于光轴虚拟约束的运动学参数标定方法。建立基于虚拟直线约束的运动学误差模型;本文在相机光轴的约束下,使用基于图像的视觉控制方法,使机械臂末端标定板的固定特征点依次到达光轴的多个位置;根据运动学模型计算特征点的对齐位置差,并使用迭代最小二乘法求解运动学参数误差。设计了Reinovo六自由度工业机械臂的运动学参数标定实验,对于随机产生的测试点,标定前的平均对齐误差为1. 50 mm,标定后降至0. 72 mm,机械臂末端的定位精度提高了52%,实验结果验证了该方法的有效性。  相似文献   

5.
机械臂视觉伺服路径规划研究进展   总被引:1,自引:0,他引:1  
视觉伺服控制是机械臂完成各种复杂作业任务的有效手段,而机械臂在动态非结构环境下自主作业的路径规划方法是视觉伺服控制领域的难点和关键.分析了动态非结构环境下视觉伺服路径规划中存在的两类约束及其处理方法,介绍并评述了国内外在机械臂视觉伺服控制中路径规划方面的相关研究进展,讨论并分析了不同路径规划方法在收敛性和稳定性等方面存在的不足,对未来的研究方向进行了展望.  相似文献   

6.
机器人视觉伺服系统是机器人领域一重要的研究方向,它的研究对于开发手眼协调的机器人在工业、生产、航空航天等方面的应用有着极其重要的意义.研究视觉伺服控制的无标定模型这一问题,首先介绍了无标定的视觉伺服控制原理.然后设计了无标定的视觉伺服控制实验,给出了实验算法,最后给出了实验结果,实验结果表明无标定的视觉伺服控制的有效性.  相似文献   

7.
为了将动力学模块引入传统的视觉伺服控制算法,使其更加符合真实模型。本文以自由漂浮空间机器人视觉伺服为目标,分析了其系统组成与工作原理。采用广义雅克比的方法完成其速度级的运动学建模,并在6D空间下分析其动力学模型。机械臂采用PD与前馈控制完成笛卡尔空间点到点连续路径规划。借助双目手眼相机完成非合作目标位姿的提取,进而完成视觉伺服系统的搭建。本文算法可将机械臂控制算法引入到空间机器人视觉伺服系统,使得机器人控制更加方便,具有结构简单成本低等优点。通过搭建Sim Mechanics仿真模型,实现了对期望轨迹的跟踪,验证了视觉伺服算法的正确性。  相似文献   

8.
基于平面约束的工业机械臂闭环标定,拟合平面与实际约束平面之间存在一定偏差,直接影响标定精度.针对此问题提出消除偏差的方法及误差模型.建立平面坐标系,得到约束平面的准确方程,通过接触式测量头对约束平面进行测量,在平面坐标系中描述测量点的位置;建立最小完整连续运动学模型,从而减少冗余参数的影响;利用双目视觉定位约束平面并规划理论测量点位置,实现自动化测量;通过改进的最小二乘法对参数误差进行辨识.实验结果表明,修正运动学参数后,机械臂绝对位置精度由1.234 mm提高到0.405 mm.该方法成本低、精度高、效率高,且简化了误差模型,适用于工业机械臂的现场标定,为机械臂生产厂家实现批量化标定及后期设备维护提供了思路.  相似文献   

9.
基于PUMA机器人的视觉伺服控制实验研究   总被引:3,自引:0,他引:3  
为解决在视觉伺服过程中存在定位精度低、伺服速度慢的问题 ,给出了一个基于图像特征的机器人视觉伺服控制方法 ,实现了机器人“手 -眼”协调视觉伺服控制 .通过适当的选取图像特征 ,实现了摄像机工作空间运动目标跟踪的视觉伺服任务 ,并采用扩展卡尔曼滤波控制方法完成机器人视觉伺服控制 .同时通过抓取目标物体进行计算机仿真及模拟实验 ,给出了实验数据 .经过比较可以看出 ,运用此方法提高了定位精度及伺服速度  相似文献   

10.
为解决在视觉伺服过程中存在定位精度低,伺服速度慢的问题,给出了一个基于图像特征的机器人视觉伺服控制方法,实现了机器人“手-眼”协调视觉伺服控制,通过适当的选取图像特征,实现了摄像机工作空间运动目标跟踪的视觉伺服任务,并采用扩展卡尔曼滤波控制方法完成机器人视觉服务控制,同时通过抓取目标物体进行计算机仿真及模拟实验,给出了实验数据,经过比较可以看出,运用此方法提高了定位精度及伺服速度。  相似文献   

11.
针对手眼标定过程要求机器人运动次数过多的缺点,提出了一种改进的单特征点手眼自标定方法.引入手眼关系矩阵的解耦运算,分别标定手眼旋转矩阵和平移向量.运算过程无需计算特征点位置,操作过程仅需机器人末端有5次以上平移运动和2次以上旋转运动.实验与误差分析结果表明,所提方法满足工业机器人手眼视觉测量的需求.  相似文献   

12.
基于终端滑模的移动机器人轨迹跟踪控制   总被引:1,自引:0,他引:1  
分析了具有不确定性非完整约束移动机器人系统的轨迹跟踪问题。在运动学模型分析的基础上,利用非奇异终端滑模技术,提出了一种新的轨迹跟踪控制算法,该算法消除了传统滑模控制带来的奇异问题。基于后退方法的思想设计系统状态变量,将系统分解为低阶子系统处理,简化了控制律的设计。结合Lyapunov方法,证明了在该控制律作用下,对满足一定速度条件的期望轨迹,移动机器人完全能够实现轨迹跟踪。仿真实验结果表明了该方法的有效性。  相似文献   

13.
轮式移动操作机器人的动力学模型   总被引:3,自引:0,他引:3  
为了揭示移动平台与机械手间的相互耦合作用力,运用牛顿-欧拉方法推导了轮式移动操作机器人的动力学模型,该动力模型具有以下特点:(1)非完整约束被溶入动力学方程中;(2)移动平台和机械手间的耦合作用力在动力学方程中被完全地表达出来.  相似文献   

14.
借助视觉反馈,研究了质心与几何中心不重合的非完整移动机器人轨迹跟踪控制问题。利用固定在天花板上的摄像机系统,作者提出了一种基于视觉伺服的运动学跟踪误差模型;基于这个模型,在质心与几何中心和视觉参数未知的情形下,作者设计了自适应轨迹跟踪控制器,并运用李雅普诺夫方法严格证明了闭环系统的稳定性。Matlab仿真证明了控制器的有效性。  相似文献   

15.
本文针对一类典型的不确定非完整运动学系统--两轮驱动的平面移动机器人,研究了其鲁棒镇定问题。首先给出单目摄像机下的移动机器人的视觉模型,然后建立(2.0)型非完整移动机器人的运动学模型,在视觉参数未知的情形下,设计一种能使系统渐近稳定的控制器,并严格证明了闭环系统的稳定性,仿真结果验证了所设计控制器的有效性。  相似文献   

16.
利用多体系统动力学方法导出机械手系统非完整约束方程,再根据最优控制方法,讨论空间机械手系统载体姿态与机械手关节运动的优化控制问题,并通过仿真算例验证了该方法的有效性。  相似文献   

17.
基于摄像机视觉反馈的方法,针对摄像机视觉参数未知及移动机器人质心和几何中心不重合且质心几何中心距离未知情况下,提出了一种不连续反馈控制律,并利用自适应技术对其进行修正,在证明时创新性地加了一个状态作为补充,最终证明了提出的控制律能使该视觉反馈系统下移动机器人的各状态由任意的初始状态指数收敛到原点,并利用MATLAB仿真验证了所设计控制器的有效性。  相似文献   

18.
针对配置机械手的室内轮式移动机器人目标物体识别、跟踪和抓取问题,采用一种目标物体识别和机器人定位的方法,利用一种基于模糊控制的轮式移动机器人视觉伺服跟踪控制的方法。针对机器人目标识别跟踪及抓取过程中受环境条件变化的影响,采用HSI颜色模型和基于阈值的区域分割的图像处理方法可以完成目标颜色物体的快速准确识别。基于云台摄像机角度信息的机器人小车目标定位方法和模糊控制理论,设计了模糊跟踪控制器,使机器人输出合适的线速度和角速度,能够实现机器人目标跟踪,使移动机器人趋近目标物体位置,并完成机械手目标物体抓取任务。仿真和实时实验结果表明:所设计的系统具有良好的目标物体识别、跟踪和准确抓取目标的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号