首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 915 毫秒
1.
嵌岩桩的极限承载力高,在现场试验中很难将其加载至破坏和监测破坏时分析嵌岩段摩阻力的分布特征.在有限单元法的基础上,采用ANSYS软件,对两个嵌岩桩模型进行了竖向承载机理模拟.分析了桩端阻力在桩顶荷载中的比例、不同土层侧摩阻力的分布等状况.数值模拟结果表明:嵌岩桩的桩顶荷载由桩侧摩阻力与桩端阻力共同承担,桩侧阻力占60%~70%,桩端阻力和嵌岩层阻力占30%~40%;土层侧摩阻力达到极限时,桩端阻力和嵌岩层的侧摩阻力还可以进一步的发挥.  相似文献   

2.
人工挖孔嵌岩灌注桩承载特性现场试验与机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以青岛市某大型工程为依托,对在泥质粉砂岩地基中的5根人工挖孔嵌岩灌注桩分别进行竖向静载荷试验与桩身内力测试。根据大直径嵌岩桩实测数据探讨大直径人工挖孔嵌岩灌注桩的荷载传递机理与竖向承载特性。试验结果表明:试桩荷载沉降(Q-s)曲线为缓变形,桩顶沉降量均小于11 mm,卸载回弹率大,幅度为51%~75%,承载力较高,5根试桩均满足设计要求;在最大荷载下,5根嵌岩桩桩端阻力所占桩顶荷载比值均在10%~20%之间,随桩长、嵌岩深度(中风化)增大而减小,表现出端承摩擦桩的特性;桩身荷载自上而下逐步发挥,上覆土层先达到侧摩阻力极限值,在嵌岩段中部侧摩阻力达到峰值;桩入岩越深,安全储备量越大,在泥质粉砂岩中风化段,实测侧摩阻力约为规范推荐值的2.5倍,说明5根桩有较大的承载潜力;随着荷载的增大,嵌岩段分担的总阻力由39%上升至45%,嵌岩段侧摩阻力占主要比重,但桩端阻力分担荷载的比例上升速率较快;根据行业标准与静载试验数据,重新认识该地层人工挖孔嵌岩灌注桩的竖向承载特性,充分发挥其承载潜力,对工程桩桩身尺寸进行优化,达到节约材料和提高施工功效的目的,具有较好的经济效益。  相似文献   

3.
以某大直径桩基础工程为例,进行了5根Ф1500mm试桩的竖向与水平静裁荷试验,实测得到了桩的荷载.沉降曲线、不同桩身截面的轴力、水平力.位移.时程曲线、水平力位移梯度关系、临界承载力以及地基土水平抗力系数,探讨了大直径钻孔灌注桩的竖向荷载传递机理和水平荷载承载特性.试验结果表明:大直径灌注桩承载力由桩侧阻力与桩端阻力共同承担,但表现出很强的摩擦桩特征,这与桩长过长、桩底岩层较软以及成桩方法有关;在竖向荷载作用下,桩侧阻力由上至下逐步发挥,并逐步达到相应的极限状态;单桩水平最大位移可以取10mm。水平承载力可取900kN.建议采用位移控制设计此类桩基.  相似文献   

4.
基于自平衡桩基测试技术,根据坝陵河大桥现场的2根桩基(SZ1、SZ2)和北盘江大桥的1根桩基(SZ3)的静载荷试验报告,对泥质岩地区大直径深嵌岩桩(嵌岩比hr/d〉3.0)在万吨级荷载作用下的承载特性进行了研究,包括桩顶荷载和位移的关系、桩侧阻力、桩端阻力等。结果表明:在泥岩地区大直径深嵌岩桩桩顶荷载-位移曲线主要以缓变型为主;桩端岩石风化程度对端阻力影响较大,微风化的泥质砂岩和白云岩极限承载力要比弱风化的泥质灰岩高;桩侧阻力的发挥与桩土界面相对位移关系比较密切,泥质白云岩桩侧阻力发挥所需桩土位移相对位移较小;最后把桩极限侧阻力与勘探报告预估值进行了分析。  相似文献   

5.
为了弥补大直径深嵌岩桩(嵌岩比hr/b≥5)承载特性研究领域的不足,利用青岛海湾大桥试桩zh12的自平衡测试结果,对大直径深嵌岩桩的承载特性进行了分析。研究了深嵌岩桩嵌岩段实测的桩侧摩阻力与位移关系以及桩端阻力与位移关系,并与采用双曲线分布模式的荷载传递法进行了比较。研究结果表明:在软岩地区,大直径深嵌岩桩基桩顶处的荷载位移曲线为缓变型,近似为直线分布形态。从实测曲线的拟合结果来看,岩层处的侧摩阻力与位移关系采用双曲线拟合是可行的,参数1/b也能反映出桩侧极限摩阻力的数值;桩端岩层实测的荷载位移曲线也与双曲线形态比较相似;利用拟合曲线所得到的参数a、b反演计算所得到桩顶荷载位移曲线也与自平衡测试方法的实测结果接近。最后,根据实测结果分析了在不同单轴抗压强度状态下,桩侧极限摩阻力经验公式中参数α的取值范围。  相似文献   

6.
下覆倾斜地层软土桩-网复合地基破坏机理试验   总被引:3,自引:1,他引:2  
为研究嵌岩桩和摩擦桩同时存在下桩-网复合地基的破坏机理,以浙江沿海某高速铁路工段为背景,基于典型断面开展相似比尺为1∶100的土工离心机模型试验,分析下覆倾斜地层软土桩-网复合地基的变形特征及破坏模式.结果表明:路堤顶面的竖向、水平位移主要发生在施工阶段及工后静置阶段,且进入运营阶段后亦有明显发展,路堤顶面竖向沉降差随运营时间的推移逐渐增长;复合地基的沉降呈非对称分布,形成一个偏向下覆倾斜地层斜坡向下一侧的不对称沉降盆;在上部荷载作用下,复合地基的沉降主要由下卧层的压缩、桩体的向上向下刺入及桩体倾倒或横移3部分组成;桩顶水平位移沿下覆地层斜坡向下方向逐渐增大并伴随不同程度的淤泥质黏土绕流破坏,桩顶竖向位移呈现偏向下覆地层斜坡向下一侧的不对称“V”字型分布;嵌岩桩的潜在破坏模式为弯拉或弯剪破坏,斜坡桩的潜在破坏模式为弯剪或倾倒破坏,摩擦桩的潜在破坏模式为倾倒及横移破坏.通过试验可知,采用等长桩的桩网复合结构对下覆倾斜地层软土地基进行处理是不合理的,将威胁高铁的安全运营.此外,对此类既有铁路地基的维护及有效加固措施亟待进一步研究.  相似文献   

7.
利用现场模型试验,研究了湛江组结构性黏土中群桩的承载性状和荷载传递机理;对比分析了单桩和群桩在竖向荷载作用下的荷载-沉降曲线、桩身轴力传递特性、桩端阻力特性和侧摩阻力特性。结果表明:单桩和群桩的Q-s曲线均表现为陡降型,有着明显的极限状态,均表现为摩擦型桩;群桩中各基桩端阻力发挥的比例大于相应单桩,且随桩间距增大而减小;单桩和群桩在一定桩长范围内,桩侧摩阻力随深度增加而增大;群桩极限桩侧摩阻力随桩间距增大而增大,且比单桩的要小,减小的比例在10.3%~21.8%之间。  相似文献   

8.
基于6根全风化和强风化花岗片麻岩地基中大直径泥浆护壁钻孔灌注桩单桩竖向抗压静载荷试验及桩身力学测试,对其中3根试桩进行桩侧后注浆,对比分析了其承载性状、变形特性及影响因素,并将所得试验数据与勘察报告推荐值和现行规范推荐值对比。结果表明:大直径嵌岩泥浆护壁钻孔灌注桩长径比25~34与嵌岩深度5D~8D,Q-s曲线呈缓变型;经后注浆处理与未经桩侧后注浆处理的试桩相比,单桩极限抗压承载力提高1.40%~15.3%,最大沉降量降低35.1%~65.6%,回弹率提高13.1%~82.4%,控制桩顶沉降效果显著。在该试验条件下,6根试桩的承载力和变形特性受长径比和嵌岩深度影响较大。经桩侧后注浆处理的试桩,嵌岩段摩阻比和桩侧摩阻力分担比受长径比和嵌岩深度影响更小;6根试桩的桩端阻力分担比受嵌岩深度影响显著;未经桩侧后注浆处理的试桩,桩侧摩阻力分担比受嵌岩深度影响更大。  相似文献   

9.
介绍了温州大门大桥桩长122 m,直径2.2 m的深厚软土钻孔灌注桩采用桩端后压浆技术前后的单桩竖向承载力自平衡测试试验数据与成果,对压浆前、后试桩在荷载作用下的沉降量、试桩桩端阻力以及桩侧阻力作了比较,结果表明压浆后的单桩竖向承载特性显著提高。  相似文献   

10.
从岩石的强度特性与本构关系出发,深入分析嵌岩桩桩端岩石应力状态与入岩部分桩侧阻强化现象,并根据三轴强度表达式论述桩端岩石的极限承载力远高于按单轴抗压强度的计算值;现行<建筑桩基技术规范>中嵌岩桩单桩竖向极限承载力标准值仍沿用岩石的单向应力状态的抗压强度一无侧限抗压强度计算,混淆了桩端岩石的实际应力状态;本文依据桩端岩石应力状态分析结论,提出了嵌岩桩极限阻力标准值的计算理念与方法,并结合工程试桩实例予以说明.  相似文献   

11.
基于自主研发的大型桩基模型试验加载系统,采用砂雨法施工,对4种不同组合形式的高喷插芯组合桩(JPP桩)进行了抗拔承载性能对比试验研究。结果表明:1)JPP桩的不同组合形式对抗拔承载力有较大影响,下组合抗拔承载能力最高,其承载能力是分段组合II的1.1倍,是分段组合I的1.3倍,是上组合的1.4倍。2)极限荷载下,组合段所提供的总侧摩阻力中,下组合最高。3)在桩体上拔过程中,桩身轴力沿桩身向下依次递减;随着荷载的增加,桩身上部侧摩阻力首先达到极限值并趋于稳定,然后桩身中下部侧摩阻力逐渐发挥。4)侧摩阻力随桩土相对位移的增加而逐渐变大,在桩土相对位移较小时便达到较大值,桩身上部的侧摩阻力在达到较大值后趋于稳定,桩身中下部不同位置处的侧摩阻力在达到较大值仍有不同程度递增的趋势,总体上呈现出双曲线的分布形式。  相似文献   

12.
介绍了试验的场地条件、试验桩的设计、桩底注浆参数及其检测。研究了持力层为砂卵石层单钻孔灌注桩桩底注浆承载性状,并且综合对比分析了桩端阻力和桩侧阻力的特性。通过对比试验,发现注浆后单桩极限承载力显著提高,平均增幅大约为27%,沉降量显著减少,平均减幅大约为66%,但回弹率呈上升趋势,平均增幅大约为42%。另外,桩端阻力也有较大幅度的提高,桩身上部侧阻力影响不明显,而对桩身下部特别在桩端周围侧阻力影响较显著。  相似文献   

13.
嵌岩扩底抗拔桩承载特性现场试验研究   总被引:1,自引:0,他引:1  
依托国网路平―富乐500 kV双回线路工程中嵌岩抗拔桩极限载荷试验,针对其中3根嵌岩扩底抗拔桩,对其桩顶荷载位移关系曲线、桩身轴力及桩身侧摩阻力等特性进行分析。结果表明,对所处岩土层相同、桩长接近的抗拔桩,嵌岩扩底抗拔桩较等截面桩不但能够显著提高极限抗拔荷载,而且能够有效降低桩顶位移。扩大头所处岩层性质对其所能提供的抗拔力影响较大,处于中风化岩层中的扩大头所提供的抗拔力要显著大于位于强风化岩层中的扩大头所提供的抗拔力。对同为扩底型的嵌岩抗拔桩,桩长较短时,扩大头提供的抗拔力占桩体极限抗拔荷载的比例更高,扩大头的扩底作用更显著。对于扩大头位于中风化岩层且扩大头上部等截面段具有一定厚度的黏土层与强风化岩层的抗拔桩,其等截面段与黏土层、强风化岩层接触部分极限侧摩阻力可在规范建议标准值的基础上,根据工程实际适当提高。  相似文献   

14.
桩基除了承受自身上部建筑物的荷载外,经常还承受各种形式的边载作用。边荷载会引起桩周土体的沉降,产生额外附加力,即负摩阻力。这些可导致桩基的承载力下降使结构破坏。通过建立桩土共同作用的三维数值模型,分析边载作用下桩基承载性能。主要研究了边载大小和边载距离对桩侧摩阻力的影响规律;桩长和边载距离组合对其的影响规律;得出了2个组合关系的表达式。同时应用最小二乘法得到不同边载组合的桩侧总摩阻力表达式,并依据离散系数的统计分析,验证了该函数表达式具有较高的精确度。得到结论:当边载距离s和边载大小Q的相对关系k值增加至32时,由边载产生的桩侧负摩阻力趋于0;当桩长L和边载距离s的相对关系c值增加至0.5时桩侧负摩阻力趋于0。即在这2个相对关系极限值以外,桩基承载性能将不受边载影响。  相似文献   

15.
为研究开口和闭口试桩在黏性土体静力沉桩过程中荷载传递规律及承载性能的差异性,采用桩身开槽预埋增敏微型光纤光栅传感器的方法,针对黏性地基土,开展两组不同桩端形式模型试桩承载性能对比试验,测得沉桩过程中压桩力、桩端阻力、桩侧摩阻力及桩身轴力发展变化规律。结果表明:光纤光栅传感器可实时监测沉桩过程中桩身受力状态;开口和闭口模型管桩的压桩力、桩端阻力等荷载均随着沉桩深度的增加呈增长趋势,而不同贯入深度下的桩身轴力却逐渐递减;黏性土中的静力压桩、开口管桩和闭口管桩的桩端阻力占比均超过50%;在桩侧摩阻力发挥上,双壁开口模型管桩外管是内管的3倍。当开口管桩贯入深度达到最大值90 cm时,土塞高度稳定在33 cm,此时,桩侧单位侧摩阻力的分布呈下大上小的形式。  相似文献   

16.
为探明串珠状溶洞对桩基竖向承载特性的影响,采用离心模型试验,研究桩基穿越两层溶洞且置于下伏溶洞之上时,不同溶洞顶板厚径比下桩基荷载-沉降特征,竖向极限承载力变化规律,桩身轴力、桩侧阻力及分项荷载变化规律,与下伏无溶洞时进行对比,提出合理顶板厚径比取值方法。结果表明:桩基穿越溶洞后,下伏溶洞顶板厚径比对其竖向承载特性影响较大,与下伏无溶洞相比,厚径比由0.5增大到3.0时,桩基竖向极限承载力影响度由57.4%降至4.0%,厚径比大于2.5后,竖向极限承载力影响度小于5.0%;厚径比增大时,桩基所穿越的溶洞范围内桩身轴力几乎不衰减,上、中层溶洞顶板范围内桩身轴力衰减速度减慢,传递至溶洞顶的荷载较大;在溶洞内桩侧阻力几乎不发挥,随厚径比增大,在上层和中层溶洞顶板范围内桩侧阻力减小;厚径比增加时桩侧阻力和桩端阻力占比分别呈逐渐减小和增大的趋势,逐渐向摩擦端承桩转化,厚径比大于2后,与下伏无溶洞时相比,桩侧阻力减幅小于10%。建议串珠状溶洞区的桩基穿越两层溶洞且置于下伏溶洞之上时,顶板厚径比大于2.5即可忽略下伏溶洞对桩基竖向承载特性的影响,可根据桩基承载需求确定合理的顶板厚度。  相似文献   

17.
软土地基中组合桩承载性状试验研究   总被引:2,自引:0,他引:2  
为掌握组合桩(钢筋混凝土桩插入水泥土搅拌桩复合而成的桩)的荷载传递机理、破坏模式和竖向承载力特性,通过对3根14 m长桩的载荷试验和桩身应变的测量,分析了桩身轴力的分布和桩周的侧摩阻力分布及影响组合桩承载力因素.试验得到了组合桩的Q-S曲线、S-logt曲线、桩的极限承载力;试验表明混凝土桩的插入改变竖向荷载的传递规律,形成了从混凝土桩到水泥土再到土的传递模式,更有效地发挥了桩周的侧摩阻力;水泥土的固化效应、混凝土桩的挤土效应和混凝土桩的荷载传递是组合桩高承载力的主要来源.组合桩具有较高的单桩竖向承载力且造价低,在软土地基工程中具有广泛的应用价值.  相似文献   

18.
通过室内模型静载实验,研究和分析了不同荷载下的膨胀土地基中桩的荷载传递特点、桩侧摩阻力和桩端阻力的变化以及二者的荷载分担比例关系等。试验表明:膨胀土中桩的静载试验所得到的P-s曲线存在明显的拐点;桩身轴力随桩顶荷载的增加在桩身中部以上迅速递减,且桩身轴力增加与桩顶荷载增加几乎呈线性关系,桩中部以下几乎变化很小;该模型桩的荷栽传递是以侧摩阻力为主的;桩侧摩阻力和桩端阻力均随桩顶荷载的增加也呈近似线性关系,但桩侧摩阻力和端阻力在荷载分担比方面存在一个极值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号