首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对永磁同步电机驱动系统中存在的随机扰动问题,本文在自适应反步法基础上,利用模糊逼近原理逼近系统中未知的非线性函数,并运用命令滤波技术,解决了传统反步法中因对虚拟控制函数连续求导而产生的计算爆炸问题,实现对考虑输入饱和的永磁同步电机随机非线性系统的位置跟踪控制,为验证本方法的有效性,采用Matlab进行仿真实验。仿真结果表明,本文设计的控制器能克服输入饱和的影响,很好的跟踪设定的期望信号,并且保证跟踪误差收敛在原点很小的邻域内,实现了对永磁同步电机快速有效的控制。该研究对实际系统具有一定的应用价值。  相似文献   

2.
针对离散自治水下机器人水平面的路径跟踪控制问题,利用水下机器人的位置和姿态角量测信息,提出神经网络自适应输出反馈控制器.所设计的控制器包括3部分,镇定水下机器人动态系统线性部分的动态反馈控制器;神经网络控制器,用来补偿水下机器人受到环境干扰引起的水动力系数变化的不确定非线性结构;补偿环境扰动和神经网络带来的重构误差的鲁棒控制器.基于离散非线性系统理论,对水下机器人水平面跟踪误差系统进行分析,得到系统的跟踪误差最终一致有界.所提出的控制方法具有对模型精确度要求低的优点,利用INFANTE水下机器人模型进行仿真分析验证了提出的控制算法的有效性.  相似文献   

3.
针对多个机械臂组成的网络化系统,本文基于命令滤波反步和自适应神经网络,对网络化机械臂系统的同步控制问题进行研究。建立了系统数学模型,对命令滤波控制器进行设计,运用命令滤波反步法,消除传统分布式反步控制的虚拟信号求导问题,并利用误差补偿信号,消除命令滤波产生的误差。同时,利用神经网络逼近系统的不确定非线性项,通过设计分布式控制器和自适应更新律,保证关节位置同步跟踪误差收敛到任意小的邻域内。为验证本文所提出的控制策略的准确性,在Matlab/Simulink仿真环境下进行仿真分析。仿真结果表明,在具有系统参数不确定性和外部扰动的情况下,该分布式控制方法可使网络化机械臂系统实现良好的位置同步跟踪。该研究对网络化机械臂系统的同步控制提供了新的思路,具有一定的实际应用价值。  相似文献   

4.
针对永磁同步电机驱动系统存在的随机扰动问题,本文利用自适应神经网络控制方法,对考虑输入饱和的永磁同步电机随机非线性系统的位置跟踪控制进行研究。通过神经网络逼近系统中的非线性函数,利用自适应反步法构造控制器,同时选择合适的李雅普诺夫函数,证明了闭环系统的稳定性,同时,为验证所提方法的有效性,采用Matlab进行仿真实验。仿真结果表明,本方法所构造的控制器,在考虑输入饱和的情况下,能够保证闭环系统所有参数都是有界的,并且跟踪误差收敛到原点任意小的邻域内。该控制策略将永磁同步电机驱动系统的研究由确定型系统扩展到随机系统中。该研究具有一定的实际应用价值。  相似文献   

5.
针对异步电机调速系统中存在的随机扰动问题,本文在传统反步法的基础上,利用神经网络逼近系统中的非线性函数,同时运用命令滤波技术,解决了传统反步法中存在的计算爆炸问题,实现了对考虑输入饱和的异步电机速度调节控制。为验证所设计控制器的有效性,利用Matlab进行仿真分析。仿真结果表明,本文设计的控制器能够有效抑制随机扰动,克服输入饱和的影响,可以很好地跟踪给定的期望信号,保证跟踪误差收敛在原点很小的邻域内。当t=5s时,负载转矩变化,系统仍能快速跟踪给定信号,实现了对异步电动机快速有效的控制。因此,该方法具有较高的理论研究意义和实用价值。  相似文献   

6.
针对异步电动机驱动系统存在着参数不确定性、外部负载扰动以及输入饱和限制等问题,本文根据自适应反步法的原理,研究了异步电动机驱动系统的位置跟踪控制策略。在同步旋转坐标(d-q)下,建立异步电动机驱动系统的数学模型,考虑异步电动机驱动系统存在输入饱和,利用神经网络逼近系统中未知的非线性函数,并采用自适应反步控制技术构造位置跟踪控制器,同时利用Matlab软件进行仿真试验。仿真结果表明,异步电动机驱动系统的位置信号可以快速跟踪给定的期望位置信号,当电压过大时能够进行限制,能够克服参数不确定、负载扰动以及输入饱和限制的影响;当t=5s时,改变负载扰动,电机仍能快速地跟踪期望的信号,说明该自适应位置跟踪控制器能够有效地克服负载扰动发生变化而引起的影响,能够实现对异步电动机的有效控制。该研究具有一定的实际应用价值。  相似文献   

7.
针对传统反步控制中存在的"计算爆炸"问题,本文结合有限时间和命令滤波控制技术,给出了基于命令滤波的异步电机有限时间位置跟踪控制。在反步设计中,引入了命令滤波技术,通过设计误差补偿机制,减小了滤波误差,成功地解决了在电机传统反步控制中的"计算爆炸"问题。结合有限时间控制技术,减小了系统跟踪误差,缩短了动态响应时间,提高了系统的收敛速度和干扰抑制能力,为验证基于命令滤波的异步电机有限时间位置跟踪控制方法的可行性,利用Matlab软件进行仿真分析。仿真结果表明,本文提出的控制方法,可以使目标信号快速跟踪期望信号,保证系统的跟踪误差能够在有限的时间内收敛到原点的一个充分小的邻域中,最终实现对异步电动机快速准确的位置跟踪控制。该方法具有一定的实际应用价值。  相似文献   

8.
为实现柔性关节机器人的高精度位置跟踪控制,本文提出了基于模糊逼近的反步自适应控制方法。该方法将隐极式永磁同步电机(permanent magnet synchronous motor,PMSM)作为驱动系统,建立二自由度柔性关节机器人的系统模型,设计反步自适应位置控制器,并利用模糊逻辑系统,逼近虚拟控制器导数项,解决高阶系统反步控制器结构复杂的问题。考虑到无力矩传感器的情况,引入电机负载转矩观测器,结合电机矢量控制策略,设计了反步电流控制器,保证驱动电机有较快的动态响应。同时,利用Lyapunov稳定性定理,对柔性关节机器人控制系统进行稳定性分析,证明整个系统为渐近稳定。仿真结果表明,本文采用的模糊反步自适应位置控制器,能够实现柔性关节机器人高精度位置跟踪控制,响应速度快,驱动电机的转矩波动小,控制器结构简单。该研究在机器人驱动系统中具有广泛的应用前景。  相似文献   

9.
针对具有外部干扰和输入饱和的欠驱动水面船路径跟踪控制问题,提出一种基于饱和补偿辅助系统的参数自适应滑模控制方法,无需确知不确定项的界。以路径上虚拟参考目标点为原点,引入Serrete-Frenet移动坐标系,在此基础上引入切向速度作为虚拟控制输入;然后结合饱和辅助系统设计具有切换增益和sigmoid函数边界层厚度的参数自适应滑模控制器。此外,李雅普诺夫理论证明了闭环系统的全局稳定性,保证跟踪误差收敛到零的任意小领域内。通过对比数值仿真验证所提控制律的有效性和自适应性,不仅可以减弱常规滑模中的“抖振”现象,同时补偿外部干扰和输入饱和误差提高跟踪精度。  相似文献   

10.
研究了一类不确定大规模非线性系统的分散自适应事件触发漏斗控制问题。首先,利用一个新的带有障碍李雅普诺夫函数的漏斗控制方法,构造了一种自适应分散漏斗控制器,以实现给定瞬态行为的输出跟踪。其次,为了解决控制器设计中的互联项问题,引入了一个辅助非线性函数。同时,将命令滤波技术应用到反步设计中,避免了反步过程中的“复杂性爆炸”问题。此外,还设计了一种事件触发机制,以减少控制器和执行器之间不必要的传输,从而提高资源效率。结果表明,所提出的控制方案能保证闭环系统的所有信号都是有界的,并且跟踪误差总是在漏斗中演化。最后,通过一个数值系统验证了该控制方法的有效性。  相似文献   

11.
针对具有外部干扰和输入饱和的欠驱动水面船路径跟踪控制问题,本文提出一种基于饱和补偿辅助系统的参数自适应滑模控制方法。通过以路径上虚拟参考目标点为原点,引入Serrete-Frenet移动坐标系,在此基础上引入切向速度作为虚拟控制输入;结合饱和辅助系统设计具有切换增益和sigmoid函数边界层厚度的参数自适应滑模控制器。此外,利用李雅普诺夫理论证明了闭环系统的全局稳定性,保证跟踪误差收敛到零的任意小领域内。通过与常规滑模控制对比,数值仿真验证所提控制律的有效性和自适应性,不仅可以减弱常规滑模中的"抖振"现象,同时补偿外部干扰和输入饱和误差提高跟踪精度。  相似文献   

12.
针对机器人系统中存在关节摩擦的问题,提出一种基于终端滑模观测器和摩擦状态观测器的双观测器自适应摩擦补偿反演控制方案:为避免速度测量带来的噪声影响,设计终端滑模观测器对机器人的速度进行估计;考虑到摩擦力无法直接获取,采用连续LuGre摩擦模型,设计摩擦状态观测器和摩擦参数自适应律,得到摩擦的估计值;结合摩擦估计值设计反演控制器,使机器人在受到关节摩擦影响的情况下能有效跟踪期望位置轨迹。最后通过Lyapunov函数证明闭环系统的稳定性以及机器人轨迹跟踪误差的收敛性,并通过MATLAB仿真验证该控制方案的有效性。仿真结果表明,该控制方法能有效抑制关节摩擦对机器人轨迹跟踪的影响,提高了系统的位置跟踪精度。  相似文献   

13.
针对一类未知边界函数的不确定仿射非线性系统,提出一种高跟踪精度特性的自适应模糊控制器。基于变论域模糊系统理论证明了最优逼近误差在特定条件下具有局部收敛特性。通过以跟踪误差作为输入并选择适当的自适应参数,设计出逼近误差局部收敛的自适应模糊控制器。以最优逼近误差存在未知上确界为主要假设,证明了闭环系统在所有信号一致有界意义下的稳定性和跟踪误差收敛性。该控制器无需附加补偿器即可在理论上消除逼近误差对跟踪误差的影响,从而实现平滑控制输入下的高精度跟踪性能。单力臂机械手控制的仿真结果表明了该方法的有效性。  相似文献   

14.
针对受干扰的机器人网络控制系统,结合干扰观测器和事件触发机制,设计了一种事件驱动控制方法, 在考虑网络中存在随机时延的同时,对干扰进行补偿。事件驱动能够大大减少网络阻塞和控制器的计算负担,节约网络通信信道带宽。控制器在判定被控机器人的输出误差是否满足预设事件的同时,接收到来自干扰观测器的干扰观测值,当控制器判定系统输出误差不满足预设事件时,控制器利用系统输出误差和干扰观测值,计算出新的控制输入来替换原来的控制输入信号,否则控制器保持上一时刻的控制输入。理论证明了机器人网络控制系统的稳定性与收敛性。最后以双关节机器人网络控制系统为例进行仿真,其结果表明,该方法能够对外部干扰进行观测,使被控机器人在受到外部干扰以及网络时延的影响下仍具有良好的位置跟踪效果。  相似文献   

15.
针对多机械臂系统(cooperative manipulators system,CMS)位置和力的控制问题,本文基于机械臂动力学方程,构建了CMS模型,将反步法与命令滤波技术相结合,不仅解决了加速度不连续的问题,而且构建了误差补偿系统,提升了跟踪效果;同时,采用模糊自适应技术,处理系统中的未知非线性项及干扰项,并基于Lyapunov方法,证明系统的稳定性,为验证所设计的新的控制策略的正确性,在Matlab/Simulink模块搭建仿真实验。仿真结果表明,本文所设计的控制策略,能保证系统具有良好的跟踪效果,且误差可以在极短的时间内收敛到一个极小的值;在物体运动加速度不连续时,虽然命令滤波技术(command filtering control,CFC)和动态面技术(dynamic surface control,DSC)都可以保证物体的位置和内力跟踪到理想的运动轨迹,但是CFC的控制效果要优于DSC的控制效果。说明本文所设计的控制策略可以保证CMS的位置和内力快速的跟踪期望轨迹。该研究具有一定的实际运用价值。  相似文献   

16.
一类非线性MIMO系统鲁棒自适应神经网络DSC设计   总被引:1,自引:0,他引:1  
为了研究一类多输入多输出强非线性系统的自适应跟踪问题,采用RBF神经网络逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,并将动态面控制与Nussbaum增益技术结合,提出了一种鲁棒自适应神经网络跟踪控制算法.该算法不仅能够解决系统中控制方向完全未知问题和可能存在的控制器奇异值问题,而且能够避免传统后推方法的计算膨胀问题,从而大大降低了控制器的复杂性,使之易于工程实现.同时,该算法保证了闭环系统的稳定性,并具有良好的鲁棒性.仿真结果验证了控制器的有效性.  相似文献   

17.
针对环形永磁力矩电动机伺服系统,考虑系统具有输入饱和,基于自适应反步法设计了自适应控制器.考虑系统中含有线性化未知参数及未知的外界扰动,通过引入辅助信号对输入饱和做出补偿.与现有结果相比,控制器设计中并不要求未知参数的界已知.该自适应控制器可以保证系统稳定.仿真结果进一步验证了控制器的有效性.  相似文献   

18.
针对柔性关节机器人中存在的非线性摩擦问题,提出一种基于摩擦补偿的柔性关节机器人分级滑模控制方法。首先,通过线性化参数的方法对柔性关节机器人受到的摩擦进行建模,并对模型中未知参数设计自适应律以实现摩擦的估计;然后,针对摩擦模型的误差,进一步设计观测器进行估计,结合摩擦的自适应和模型误差估计实现对摩擦的补偿;最后,利用电机侧和关节侧的位置误差和速度误差设计一级滑模面,再根据一级滑模面设计二级滑模面,从而得到分级滑模控制器,进一步实现柔性关节机器人的位置轨迹跟踪控制。通过Lyapunov函数证明了机器人关节轨迹跟踪误差的收敛性。仿真结果表明:该控制方法结合参数自适应和模型误差观测器可以有效地对摩擦进行补偿,在有限时间内实现柔性关节机器人的位置轨迹对期望位置轨迹的跟踪。  相似文献   

19.
针对一类MIMO非线性状态不可测系统,提出一种基于观测器的自适应模糊控制方法。该方法应用"主导输入"的概念,同时考虑了函数逼近误差和系统外扰的存在,假设了该系统逼近误差和系统外扰有界但界未知的情况;并探讨了自适应模糊控制器的参数自适应律由跟踪误差和逼近误差共同进行调节。基于李亚普诺夫函数证明了闭环系统的所有信号是有界的,并且跟踪误差收敛到零。仿真结果表明了该方法的有效性。  相似文献   

20.
针对一类含有Backlash-like迟滞特性的非线性系统,设计了输入受限情况下的滑模控制器。首先分析了Backlash-like模型中的变量特性,引入RBF神经网络对迟滞模型中的类扰动项进行近似逼近,在类扰动项界未知情况下,削弱迟滞对系统的影响;然后通过定义一个稳定自适应的辅助补偿系统,采用输入饱和误差动态放大的方法来实现控制饱和的补偿;最后结合Lyapunov函数设计了滑模控制器。该方法考虑了控制输入受限,符合实际工程情况,有效减少了智能材料中迟滞非线性对系统造成的不良影响,提高了系统的控制精度和稳定性能。仿真结果表明该控制方法有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号