首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
目的分析电主轴热变形产生及分布,为研究电主轴热误差,提高主轴加工精度提供理论依据.方法基于电主轴稳态温度场分布,采用ANSYS顺序耦合理论,分析高速电主轴热变形分布情况.通过电主轴测试系统建立热变形实验,测量高速电主轴工作端热变形,验证有限元仿真结果.结果仿真结果表明:随着电主轴速度增高,主轴热变形和温升也越来越大.电主轴在热稳态下,沿着轴向伸长而径向弯曲变形.结论当主轴材料一定,热变形与速度几乎呈线性关系,同时,主轴温升越大,热变形越大.此结论为有效控制主轴热变形,减小热误差及提高主轴稳定性提供理论基础.  相似文献   

2.
针对二维视觉在线测量工件时,照度变化因素导致测量误差的问题,提出基于遗传算法优化的最小二乘支持向量机(GA-LSSVM),建立照度误差模型的方法. 分析视觉测量系统的误差来源,通过最小二乘法分析照度影响下的误差规律. 利用照度变化误差实验,获得照度和测量系统的误差数据,分别训练GA-LSSVM、支持向量机(SVM)以及BP神经网络,建立照度和测量系统误差模型,对系统测量误差进行预测. 结果表明:在变照度测量误差预测模型中,GA-LSSVM模型、SVM模型及BP神经网络模型的预测精度分别为94.90%、90.23%及80.60%. 这表明遗传算法优化的最小二乘支持向量机建立的变照度误差模型,在拟合和预测精度上优于传统的BP神经网络.  相似文献   

3.
研究硬旋铣加工时工件的热变形对提高工件加工精度、掌握硬旋铣加工技术是至关重要的。文章基于高效环保的滚珠丝杠螺纹硬旋铣工艺,围绕提高硬旋铣加工螺距精度问题,针对加工过程中的工件热伸长及误差补偿方法,通过基于BP神经网络算法的热伸长研究及补偿实验研究,探索了工件热伸长变化的特征值提取、BP预测模型的建立及验证、热伸长误差的补偿方法。结果表明:根据特征值法建立的BP神经网络热伸长预测模型精度较高,根据模型预测结果进行螺距误差插补补偿加工能够提高滚珠丝杠硬旋铣加工的螺距精度。  相似文献   

4.
主轴系统热问题是高精度机床必须要考虑的关键问题,接触热阻的大小影响机床的传热性能,从而影响其加工精度. 利用表面接触的分形理论,计算接触面的量纲一的接触面积,针对接触微凸体的热阻由基体热阻和收缩热阻形成接触对,建立了一个考虑接触界面基体热阻和收缩热阻的表面接触热阻模型,讨论了不同的分形参数对接触热阻的影响. 以立式加工中心电主轴系统为研究对象,分析了电机的损耗发热和轴承的摩擦发热,运用有限元软件对电主轴模型在有无接触热阻2种情况下的稳态温度场和稳态热变形进行仿真分析. 讨论了有无热阻情况下电主轴温度和变形变化量,论证了接触热阻对电主轴热温度场和热变形的影响. 结果表明:电主轴考虑接触电阻时温度将升高,变形将增加.  相似文献   

5.
目的分析高速电主轴温度场分布情况,为研究高速电主轴温升、热变形预测提供理论依据.方法建立高速电主轴1/4三维有限元模型,基于损耗实验计算主轴电机及轴承生热率前提下分析高速电主轴温升分布情况.通过电主轴测试系统建立温升实验,测量高速电主轴外壳不同部位温升验证有限元仿真结论.结果仿真结果表明:高速电主轴稳态温度场中转子处温度最高,温度为84.40C;高速主轴壳体最高温升出现在电主轴轴头处,温升为23℃,与实验结果相比误差为8.6%.结论通过分析温升仿真和实验得到高速主轴外壳不同部位温升不同,外壳温度变化是一个非线性变化过程,前2000s温度快速升高,2000s后温度逐步稳定.此结论为有效控制高速主轴温升,减小主轴变形及提高主轴精度提供理论基础.  相似文献   

6.
介绍了高速木工机械电主轴的特点,分析了高速木工机械电主轴单元的热变形机理.建立了某型高速木工机械电主轴热态特性有限元分析模型,利用ANSYS进行了稳态温度场分析,并利用分布加载瞬态热分析模拟了机床的实际工作情况,得到了电主轴的温度场分布情况,为有效控制电主轴的温升提供了理论依据.在分析结果的基础上,提出了改善电主轴热态特性的措施,为电主轴冷却结构设计提供了参考.  相似文献   

7.
精密机械热动态误差模糊神经网络建模研究   总被引:8,自引:3,他引:8  
结合模糊逻辑与人工神经网络的优点,提出精密机械热动态误差的模糊神经网络模型,并在多变量模糊模型后件结构与参数辨识中提出了主分量分析建模的新方法.基于语言控制规则的模糊模型,采用模糊推理方法,建模的关键在于结构辨识和参数辨识. 采用主分量分析方法可有效地辨识模型后件的结构与参数.为克服建模用的有效数据量少于后件参数,而无法建立相应的模糊模型这一问题,采用一种多变量系统的模糊神经网络建模方法,利用神经网络具有学习的能力,通过使用适当数量的具有充分激励信息的优选数据组作为学习样本对神经网络进行训练,从而建立起模糊神经网络模型.当辨识的模型精度达不到要求时,可应用模糊神经网络的多次训练获取更高的模型精度.实测数据建模表明,模糊神经网络模型能有效地描述热动态误差.  相似文献   

8.
动态模糊神经网络在变形预测中的应用   总被引:1,自引:0,他引:1  
为了得到更好的桥梁墩台沉降变形预测精度,减少工程监测实践的误差,分别介绍了基于扩展径向基函数神经网络(RBFNN)与动态模糊神经网络(DFNN)的学习算法和参数的确定方法。选取某一桥梁沉降监测数据分别进行基于扩展径向基函数神经网络与动态模糊神经网络的自适应学习训练,进行桥梁墩台沉降变形预测。实例分析结果表明,径向基函数神经网络预测误差达到0.15 mm,而动态模糊神经网络预测误差达到0.07 mm,显然动态模糊神经网络具有更高的预测精度,从而证实了动态模糊技术与神经网络相结合的自适应学习训练过程的优越性。  相似文献   

9.
通过建立高精密数控立式静压圆台磨床的有限元模型,进行磨床热源分析,研究了各热源发热量的计算方法,进行了温度场分析求解、热结构耦合分析,得到了立式磨床的热特性、热变形误差。通过机床热变形对精度的影响计算分析,提出发热量控制、优化机床结构、减少热误差措施。  相似文献   

10.
为减少大型结构件的加工误差,基于热特性分析建立了考虑工件热变形的综合误差模型及其补偿方法.分析光栅尺温度变化产生热变形的机理,并通过热流研究光栅尺局部的非线性温度变化规律,对龙门加工中心几何误差和热误差分别建模,并叠加生成复合误差模型.建立工件热变形与温度变化量之间的线性模型,并分析加工过程中复合误差与工件热变形之间的相互关系,建立考虑工件热变形的综合误差模型.利用数控系统外部机械原点偏移功能,应用自主研制的误差实时补偿系统,并依据考虑工件热变形的综合误差模型,实现对龙门加工中心的误差补偿.结果表明:只考虑机床误差时,复合误差模型有很高的预测精度,但并不能应用到有较大工件热变形的大型结构件加工中;而考虑工件热变形的综合误差模型在大型扭力臂的实际加工中效果良好,其加工定位精度至少提高了52%.  相似文献   

11.
精密车削中心热误差和切削力误差综合建模   总被引:3,自引:1,他引:2  
热误差和切削力误差是影响数控机床精度的最重要的两个误差源,误差补偿技术是一种消除机床误差经济有效的方法,而有效的误差补偿依赖于准确的误差模型.在对切削加工过程中的热变形和切削力分析的基础上,选取合理的参量,采用BP神经网络和PSO算法相结合的优化方法建立了热误差和切削力综合模型.BP-PSO建模方法改善了网络模型的收敛速度和预测精度.基于所建误差模型,对一台精密车削中心加工实时补偿后使得径向加工误差从27 μm提高到8 μm,大大提高了车削加工中心的加工精度,验证了模型精度.  相似文献   

12.
提出一种基于经验模态分解(EMD)和遗传BP神经网络的大坝变形预测新算法。该算法首先通过EMD对变形序列进行分解,有效分离出非线性高频波动分量和低频趋势分量;然后应用遗传算法优化BP神经网络的权值和阈值,再对各分量进行建模预测;最后叠加各分量预测值得到预测结果。应用新算法与灰色GM (1,1)、回归模型、普通卡尔滤波和遗传BP神经网络算法进行对比分析。结果表明,该算法具有较强的自身内部环境优化和外部平台构建能力,自适应能力和非线性拟合能力较强,在一定程度上保证较优的局部预测值和较好的全局预测精度,在大坝变形预测中具有一定的实用价值。  相似文献   

13.
针对余氯量在供水系统内非线性变化的特性,建立了PSO-SVM与BP神经网络组合模型对管网末端余氯进行预测分析。该模型通过粒子群优化算法(PSO),对SVM的特性参数进行优化;采用BP神经网络对模型进行残差修正。通过对单一的BP模型和SVM模型、组合模型的预测精度进行分析。结果表明:组合模型预测比BP和SVM单一预测均方误差分别降低了62.30%、75.29%,平均相对误差降低了55.03%、54.27%。综上所述,该模型具有强大的非线性拟合能力,预测精度高,运行稳定性强,对供水企业控制余氯的投加量和设置二次加氯点有一定的指导作用。  相似文献   

14.
智能电网中电力负荷短期预测数据挖掘模型   总被引:3,自引:0,他引:3  
依据数据挖掘理论对数据进行收集、整合,运用改进型BP神经网络模型处理数据,建立电力负荷模型进行短期预测.通过不同精度下的实验分析,结果表明,改进型神经网络负荷预测模型在高精度下预测结果优于低精度下预测结果,最大误差同比降低80%,适用实际负荷预测.  相似文献   

15.
为了使数控机床加工精度得以提高,对数控机床热误差补偿系统进行研究。在建立基于BP神经网络数控机床热误差补偿模型的同时,运用Matlab-GUI工具设计了具有通用性交互式数控机床热误差补偿的仿真系统,该系统可使热误差补偿更具有实时性、在线高效性和补偿系统操作可视化。  相似文献   

16.
为提高热误差预测精度和鲁棒性,提出一种基于注意力机制和深度学习网络的数控机床热误差预测模型。采用数据转化策略,将数控机床原始温度数据转化为温度图像,直接作为深度学习网络的输入;提出一种基于注意力机制的温度敏感点识别网络,根据温度测点与热误差关联程度,赋予各温度测点不同的权值,避免了温度测点的人为选取弊端;建立12层深度CNN学习预测网络,利用其强大的图像特征学习能力,挖掘温度图像与热误差的非线性映射关系,无需对温度关键点进行预选择,保留了更多的热误差与机床温度特征关系,显著提高了模型预测精度。为了提高热误差模型的精度与泛化能力,引入Dropout正则化方法和Adam优化算法,对深度卷积神经网络的结构与参数进行了优化。该方法在针对G460L型数控车床的热误差验证中表现出较高的预测精度。通过与BP神经网络和多元回归等传统热误差模型进行对比,深度卷积神经网络框架下的热误差模型在泛化性指标上表现更优。  相似文献   

17.
基于熵权法的PHC管桩承载力组合预测   总被引:1,自引:0,他引:1  
为克服单项预测方法产生的误差,利用灰色模型GM(1,N)、多元线性回归、BP神经网络等3种单项预测方法建立组合预测模型,并采用熵值法确定加权系数。通过对PHC管桩承载力进行比较预测,结果显示GM(1,N)法平均绝对百分比误差(MAPE)值为5.4%,多元线性回归法的MAPE为3.0%,BP神经网络法的MAPE为2.8%,组合预测法的MAPE为2.3%。因此组合预测法精度较高,实用性更强。  相似文献   

18.
以数控高速加工中心电主轴为研究对象,采用Solidworks软件建立了电主轴的三维模型,应用有限元分析软件Abaqus对电主轴模型进行了热态分析,绘制了电主轴的稳态温度场分布图,并求出电主轴在不同转速下的温度值.为电主轴冷却系统的设计提供了依据.  相似文献   

19.
高速电主轴轴承在运转过程中产生大量的摩擦热,而轴承温度是影响主轴系统刚度和精度的主要因素。通过高速电主轴空载运转实验,测试了在不同转速下主轴轴承的温度,获得了151组温度值;基于BP神经网络,对每个测试点温度,利用前100个温度数据进行网络构建和训练,求解了后51个数据的误差绝对值累积和,网络训练结果表明所建立的BP神经网络泛化能力强;进行了5种工况的温度预测,其预测结果表明温度预测值与实验值绝对误差小,精度高。此外,文章还分析了轴承的预紧力、主轴转速及润滑油的黏度对轴承温升的影响,其分析结果表明主轴转速是影响轴承温升的主要因素。  相似文献   

20.
以供热系统为研究对象,针对集中供热热负荷中由于温度因素、随机因素、以及建筑本身因素等问题导致预测精度不高。因此提出了采用BP神经网络算法来进行预测,它对具有非线性的模型有很好的控制效果,并且可以进行自我学习。但由于BP神经网络的波动较大,比较容易出现局部优化现象,因此在使用BP神经网络的基础上进行改进,将BP神经网络与遗传优化算法相结合,弥补BP神经网络的不足。最后通过仿真实验结果表明热负荷预测的误差大大减少,预测精度提高,继而实现合理供热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号