首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
一种高精度自偏置带隙基准电压源的设计   总被引:1,自引:0,他引:1  
根据当前集成电路设计中对基准电压源的低功耗、高电源调整率、高电源抑制比的要求,设计了一种CMOS工艺下的高精度自偏置带隙基准电压源.该电压源由自身直流通路上的电阻来实现电压自偏置,由三级共源共栅电压偏置来实现电流匹配和电压均衡,静态电流约为13μA,具有31ppm/℃的低温度系数、22.7μV/V的高电源调整率和93.7 dB的高电源抑制比.  相似文献   

2.
低电压、高PSRR的带隙电压基准源   总被引:1,自引:0,他引:1  
设计了一款高精度、低电源电压的CMOS带隙基准源,具有良好的电源抑制比。电路采用电流模结构和反馈控制实现了低电压、低功耗和高电源抑制比。基于0.25μm CMOS工艺,测试结果表明:在1V电源电压下,1KHz频率时,电源抑制比约为80dB,在0-70℃温度范围内,输出电压变化率不超过0.3%。  相似文献   

3.
一种高电源抑制比带隙基准电压源的设计   总被引:1,自引:0,他引:1  
采用共源共栅运算放大器作为驱动,设计了一种高电源抑制比和低温度系数的带隙基准电压源电路,并在TSMC 0.18μm CMOS工艺下,采用HSPICE进行了仿真.仿真结果表明:在-25~115℃温度范围内电路的温漂系数为9.69×10-6/℃,电源抑制比达到-100 dB,电源电压在2.5~4.5 V之间时输出电压Vref的摆动为0.2 mV,是一种有效的基准电压实现方法.  相似文献   

4.
基于0.6μm BCD工艺参数,设计了一种新颖的低温漂、低功耗、高电源抑制比的自偏置带隙基准电压源.电路仿真结果表明:其工作电源电压低至1.7V,输出基准电压为1.24 V,温度系数仅6.68×10-6V/℃,电流消耗22 μA,电源抑制比高达82 dB.该电压源可广泛应用于模/数、数/模转换电路和电源管理芯片中.  相似文献   

5.
高性能分段温度曲率补偿基准电压源设计   总被引:7,自引:0,他引:7  
针对带隙基准电压源温漂高、电源抑制比(PSRR)低的问题,提出一种新颖的分段曲率补偿技术.该电路将基准源工作的全温度范围划分为3个区间,对各段温度区间进行不同的温度补偿,同时引入电流环负反馈结构,提高电路在低频时的电源抑制比,实现在-40~150℃内,温度系数为1.24×10-6,在DC时电源抑制比为-137dB.该电路采用TSMC0.6μmBCD工艺设计实现,芯片面积为0.5mm2,关断电流小于0.1μA,工作静态功耗为125μW.投片测试结果验证了电路设计的正确性,当电源电压为2.5~6.0V时,该基准源输出电压摆幅仅为0.220mV.  相似文献   

6.
针对电源噪声影响图像、声音信息的传输质量,系统电源上电时间过长导致延时增大、时序紧张等问题设计了一种可快速启动的高电源抑制比的带隙基准源。通过引入负反馈回路,维持基准电压的稳定,以提升基准源的电源抑制比。设计了快速启动电路,在电源上电时通过开关管快速导通以拉高基准电压,加速了带隙基准源的启动,在基准建立好之后启动电路停止工作。基于5 V 0.35μm互补金属氧化物半导体(Complementary Metal Oxide Semiconductor, CMOS)工艺设计了基准电压源,仿真结果表明,在-40℃~125℃温度变化范围内,基准源电压变化为5.33 mV,电源抑制比在100 Hz以下达到-90.1 dB,启动时间为9μs。设计的带隙基准电压源启动速度较快,电源抑制比较高。  相似文献   

7.
一种CMOS高阶曲率补偿的带隙基准源电路的设计   总被引:1,自引:1,他引:0  
为解决传统CMOS带隙基准电压源的温度系数较高的问题,采用高阶曲率补偿方法,提出了一种新型的带隙基准电压源,这种基准电压源的结构简单同时具有良好耗能性能,并且基准电压的温度系数得到一定的优化.利用NMOS管工作在亚阈值区域时漏电流和栅源电压的非线性特性,通过引入与基准电压温度系数成相反趋势的高阶补偿电流,降低基准电压的温度系数,以较少的硬件消耗为代价大幅提高了其温度特性,最后推导出补偿后的基准电压的计算公式.基于0.18μm BCD工艺进行仿真,结果表明:在-40℃~150℃温度范围内,基准电压的温度系数为6.94×10~(-6);电源电压VDD在2.5~5.0 V范围内,线性调整率为0.033%,电路在5 V电源电压为下工作电流为7.36μA;在典型工艺下(TT),电源抑制比(PSRR)为77.4 dB.基准电压的温度特性的理论分析结果与仿真结果吻合较好,通过高阶补偿后,带隙基准电压源表现出优良的性能,满足了带隙基准源的低功耗和低温漂的设计要求.  相似文献   

8.
设计了一种基于电流模式的具有非线性补偿的低温漂低功耗带隙基准电压源,在传统电路的基础上增加一个三极管和两个电阻达到对双极型晶体管的发射结电压VBE中与温度相关的非线性项的补偿。电路采用CSMC0.5μmDPTM CMOS工艺制造。该电路结构简单,在室温下的输出电压为1.217V,在?40℃~125℃的范围内温度系数为4.6ppm/,℃在2.6~4V之间的电源调整率为1.6mV/V。在3.3V的电源电压下整个电路的功耗仅为0.21mW。  相似文献   

9.
为克服传统带隙基准源在温度性能上的缺陷,设计了一种低温度系数的带隙基准电路。该电路在传统电流模基准结构的基础上,引入一个工作在亚阈值区电流基准核产生的电流来达到高阶补偿的目的。在一阶补偿的基础上,补偿电流的进一步补偿,大大降低了基准输出的温度系数。电路设计采用0.18μm的CMOS工艺,利用Cadence软件的Spectre仿真工具对电路进行仿真,仿真结果表明,在2.7V电源电压下,基准输出电压为1.265V,温度在-40~125℃变化时,基准输出电压仅变化0.2mV,相比一阶补偿的变化(约为2.5mV),精度提升了10多倍;电源电压在1.8~3.5V变化时,基准输出电压变化4.5mV;在出色的温度性能下有良好的抗干忧性,满足了高性能基准源的要求。  相似文献   

10.
提出了一种反向散射链路频率生成电路,用于符合EPCTM Class1 Generation2协议的无源超高频射频识别(UHF RFID)芯片.该电路在读写器发送Query命令时生成控制信号,使积分器产生参考电压,控制弛张振荡器产生符合协议要求的反向散射链路频率.该电路采用TSMC0.18μm CMOS工艺实现.测试结果表明,在1V工作电压下功耗为0.52μW.采用该电路的UHFRFID芯片可以提高芯片工作距离以及读取速率.  相似文献   

11.
提出了一种适用于无源超高频射频识别(RFID)标签的低压高效电荷泵电路的设计方案,用以最大化标签的识别距离。该方案利用偏置电路为主电荷泵提供偏置电压,通过二极管连接的MOSFET抑制偏置电路的负载电流来提高偏置电压,大大减小了传统电荷泵中的阈值损失,有效抑制了反向漏电流,提高了电荷泵的灵敏度和能量转换效率。该结构使用chartered 0.35 μm CMOS工艺进行流片验证,实测结果表明,在输入275 mV负载电阻200 kΩ情况下,电荷泵输出可达1.47 V,能量转换效率最高可达26.2%;采用该电荷泵的RFID标签识别距离最远可达4.2 m。该设计为RFID芯片的良好性能提供了可靠保证。  相似文献   

12.
A novel low-voltage, low-power current mode bandgap reference circuit for the passive UHF RFID tag is presented. The ICTAT current is generated by VBE of the BJT transistor. The ICTAT current is generated by the MOSFET biased in the sub-threshold region, based on the theory that the I-V curve of the sub-threshold MOSFET shows an exponential relationship. The circuit is designed and implemented by TSMC 0.18μm CMOS technology. The biggest variation of Vref of the reference is smaller than 1.75%. Test results show that the power of the circuit is 0.65μW, and that the minimum operating voltage is 0.829V. The active area of the circuit is about 0.04mm2. As a result, the read sensitivity of the tag with the proposed bandgap reference circuit is -16dBm.  相似文献   

13.
利用CSMC0.6μmCMOS标准工艺及OrCAD模拟电路设计软件环境,设计了2种具有曲率补偿的带隙基准电压源电路,并用Hspice对电路的温漂、电源抑制比、电源电压稳定性及电路功耗进行了仿真。仿真结果表明,第1种在-20℃~130℃温度范围内,温度系数为29.97×10^-6/℃;第2种在-20℃~130℃温度范围内,温度系数为12.73×10^-6/℃。  相似文献   

14.
设计一种基于0.35μm 2P4M CMOS工艺,具有高电源抑制比、快速负载瞬态响应特性的低压差线性稳压器电路。该电路通过采用缓冲运放来驱动LDO电路的功率调整管,有效提高了LDO电路的电源抑制比和负载瞬态响应特性。该电路的输入电压为3.3V-4V,输出电压为2.8V;负载电流范围为0.5mA到100mA,当负载电流在全负载范围内瞬变时,输出端过冲电压小于1mV;在全负载范围内,低频时,电路的电源抑制比达到-89dB以上,在1MHz时,电路的电源抑制比达到-60dB以上。  相似文献   

15.
A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsensor and compatible with 0. 6 μm ( double poly) mix process is proposed in this paper. The circuit can be employed in the range of 1. 8 - 8 V and carry out the first-order PTAT ( proportional to absolute temperature) temperature compensation. Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR ( power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased. Results from HSPICE simulation show that the PSRR is - 72. 76 dB in the condition of low-frequency,the temperature coefficient is 2. 4 × 10 -6 in the temperature range from - 10 ℃ to 90 ℃ and the power dissipation is only 14 μW when the supply voltage is 1. 8 V.  相似文献   

16.
一种新型低压高精度CMOS电流源   总被引:3,自引:0,他引:3  
采用低压与温度成正比基准源和衬底驱动低压运算放大器电路,设计了一种新型的低压高精度CMOS电流源电路,并采用TSMC 0.25μm CMOS Spice模型进行了电源特性、温度特性及工艺偏差的仿真.在室温下,当电源电压处于1.0~1.8V时,低压电流源输出电流Iout约为12.437~12.497μA;当温度在0~47℃范围内,输出电流为12.447μA;各种工艺偏差条件下的最大绝对偏差为0.54μA,与典型工艺模型下的相对偏差为4.34%.  相似文献   

17.
采用0.18μm CMOS工艺设计了用于2.5GHz锁相环系统的1∶20分频器电路。该电路采用数模混合的方法进行设计,第一级用模拟电路实现1∶4分频,使其频率降低,第二级用数字电路实现1∶5分频,从而实现1∶20分频。该电路采用SMIC 0.18μm工艺模型,使用HSPICE进行了仿真。仿真结果表明,当电源电压为1.8V,输入信号峰峰值为0.2V时,电路可以工作在2.5GHz,功耗约为9.8mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号