首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
强烈地震后的沟内滑坡堰塞坝是泥石流地质灾害的重要物质来源,由于季节性降雨的间歇性和沟道地形的特殊性,泥石流沟内滑坡堰塞坝的侵蚀破坏过程与堵河型滑坡堰塞坝有明显区别,本文以银洞子滑坡堰塞坝为例,对此类堰塞坝的侵蚀破坏特征进行了研究。通过多年的现场地质调查和理论分析,主要得出以下结果:1)银洞子堰塞坝受到的侵蚀效应包括降雨导致的坡面汇流冲刷,溃口水流或泥石流的下切侵蚀、侧向侵蚀和溯源陡坎侵蚀;2)横向巨大高差导致该堰塞坝漫顶溃决时的初始溃口位于坝体侧面,水流或泥石流对溃口边坡的侧向侵蚀过程为单向侵蚀,在这种侧向侵蚀和下切侵蚀共同作用下,堰塞坝的溃口边坡越来越高,堰塞坝的稳定性降低;3)银洞子沟上、下游土体强度不同导致堰塞坝的坡面侵蚀效果不同,下游一侧坝体强度较弱,坡面汇流冲刷导致堰塞坝表面被两道大型拉槽分割,堰塞坝的整体性受到影响;4)银洞子堰塞坝特殊的物质结构导致溯源侵蚀陡坎向上游的发展速度缓慢,堰塞坝的侵蚀过程不一致。在多种侵蚀效应的共同作用下,银洞子沟滑坡堰塞坝下游部分的溃口边坡高度大、完整性差,很可能失稳形成二次滑坡,将导致大量松散物质进入新形成的沟道内,从而为泥石流活动提供物源储备。  相似文献   

2.
历史大型堵江滑坡研究不仅是认识区域构造背景和河流演变规律的重要工作,而且对山区河流工程安全亦有十分重要的意义。以金沙江上游河段的王大龙古滑坡为研究对象,基于野外调查与资料分析,对其成因与演变过程进行了分析。主要结论如下:(1)王大龙滑坡位于金沙江缝合带,源区基岩主要为三叠系中心绒群下段板岩 (T1-2zh1),其次为二叠系嘎金雪山群下段石英砂岩 (Pgj1),滑坡总体上为王大龙断裂与中心绒群板理面切割形成的楔形体,前缘受雄松-苏洼龙活动断裂切割,方量约4.0×108m3;(2)诱发滑坡的内动力为地震,外动力为河流凹岸侵蚀,滑坡时间应为晚更新世大理冰期;(3)堰塞坝长约1700m,宽约3000m,高度超过450m,形态右高左低,右岸高程约2770m,左岸垭口高程约2735m;(4)堰塞湖规模约266×108m3,干流库尾到达叶巴滩水电站坝址的降曲河口,长度约176 km;(5)堰塞坝发生过3次溃决,溃口底面高程分别为2460m、2400m和2358m(现河面高程);(6)第一次溃决极有可能雄松-苏洼龙断裂错动导致的,时间早于1900 a BP,估算溃口流量21.0~39.8×104m3/s,远远大于长江历史洪水记录。  相似文献   

3.
青藏高原区域滑坡-泥石流-堰塞湖灾害频繁发生,灾害损失巨大,与之相关的科学研究一直是国内外研究的热点和难点。我国在堰塞湖减灾领域已经积累了丰富的实践经验,但是冰碛土滑坡-泥石流-堰塞湖灾害演化过程非常复杂,涉及众多的物理力学机制和学科理论,复杂气象条件下冰碛土滑坡-泥石流-堰塞湖的动力形成机制、溃决冲刷及洪水演进灾害链的全过程演化分析与数值模拟方面尚需进一步研究。揭示冰碛土滑坡-泥石流-堰塞坝的链生放大机制和冰碛土堰塞湖溃决演进的动力灾变机理是实现冰碛土滑坡-泥石流-堰塞湖灾害有效防控的关键,结合国内外冰碛土滑坡-泥石流-堰塞湖形成与溃决的相关研究现状,提出了冰碛土滑坡-泥石流-堰塞湖灾害需要关注的几个重要研究方面:(1) 复杂气象条件下冰碛土力学性能演化;(2) 冰碛土滑坡-泥石流动力灾变过程与运移模型;(3) 冰碛土滑坡-泥石流-堰塞湖形成机理与仿真模拟;(4) 冰碛土堰塞坝冲刷溃决机理与流道拓展过程;(5) 下游河道水沙互馈作用机制与洪水演进模拟。并开展了大量前期探索和研究工作,初步揭示了冰碛土滑坡-泥石流运移与多期堵江机制,构建了能考虑水流侵蚀与溃口边坡间歇性崩塌的堰塞坝溃决演化模型,并探讨了冰碛土-滑坡-泥石流-堰塞坝灾害链演化过程模拟方法。研究结果为进一步弄清冰碛土滑坡-泥石流-堰塞湖灾害链过程的复杂动力学机制、构建灾害链过程的控制性理论模型、开发全过程数值模拟系统奠定了基础,以期为冰碛土滑坡-泥石流-堰塞湖灾害链的成灾机理分析提供理论依据及为非工程避险与应急处置决策提供技术支撑。  相似文献   

4.
青藏高原三江并流区剧烈的构造活动和强烈的河流侵蚀导致其高山峡谷中大型堵江滑坡频频发生,并且链生灾害剧烈,严重影响川藏铁路、滇藏铁路等国家重大工程的建设。青藏高原重大滑坡堵江具有独特的天然形成条件以及鲜明的内外动力特征,通过对典型堵江滑坡的考察,建立青藏高原三江并流区堵江滑坡数据库,对认识堵江滑坡地质孕育特征在区域上的普遍性规律及孕灾条件意义重大。本文基于2019年实施的三江并流区堵江滑坡野外地质调查和滑坡地质成因分析,阶段性揭示了堵江滑坡的一般孕育规律:(1)三江并流区的缝合带和活动断裂不仅易使斜坡岩体发生蚀变,从而降低坡体结构的完整性、提高对风化作用的敏感性,还会产生剧烈的地震内动力作用诱发堵江滑坡的启动;(2)堵江滑坡具有发生在倾倒变形的逆倾斜坡上以及岸坡凹岸处的空间分异特性,在河流下切作用下高势能、大方量的滑体往河谷运动形成堵江;(3)河谷中的背斜构造在河流侵蚀过程中为两岸的逆倾或近直立岩层创造了倾倒变形的临空条件,加上背斜核部邻近斜坡岩体的挤压破碎性质,使斜坡结构更易发生深层变形破坏,造成堵江滑坡事件;(4)软弱炭质岩层化学风化在内的外动力地质作用对坡体结构的变形、破坏亦有不可忽视的促进作用。基岩滑坡一旦发生堵江,其潜在的灾害链问题将十分严重,未来需要进一步优化、整合资源,借助高科技手段克服青藏高原滑坡灾害考察的诸多困难。本文通过揭示堵江滑坡孕育的一般规律,为堵江滑坡数据库的完善奠定了基础,有助于应对更严峻的青藏高原防灾减灾挑战。  相似文献   

5.
汶川大地震触发了大量的大型滑坡,这些滑坡体在峡谷河流地带堵塞河道形成了堰塞湖.本文以唐家山滑坡形成的堰塞湖为例,通过离散元数值方法对地震作用下唐家山滑坡的滑动堵江机制进行了模拟,结论如下:唐家山滑坡确实为一高速滑坡,滑坡从启动到停止,其速度变化曲线具有显著的非线性特征,滑坡的最大滑速达27 m/s;直观地再现了唐家山滑坡的滑动以及形成堰塞体的全过程运动特征和滑坡堵江机制,并把其划分为5个阶段,即滑动启动阶段、加速滑动阶段、减速滑动阶段、遇阻堆积阶段和自稳成坝阶段.  相似文献   

6.
堰塞坝溃决物理概化试验是当前研究堰塞坝溃决机理较为可行的方法,但在现有堰塞坝溃决试验中,由于试验坝体尺寸较小、试验上游库容不足,导致试验的溃决过程与实际堰塞坝溃决存在较大差异。为尽量克服库容的不足所带来的影响,本文采用了最大库容达380m3的大尺度堰塞坝溃决试验系统。本文以无粘性、宽级配砂砾料堰塞坝为对象开展了多组室内大尺度溃决试验来揭示堰塞坝溃决机理,并通过设置不同背水面坝坡来研究其对溃决过程的影响。通过试验发现堰塞坝溃决过程可以分为沿程冲刷、溯源冲刷、快速发展和溃口稳定四个阶段。在溃决过程中发现陡坎侵蚀和溃口两侧土体失稳坍塌是溃口快速发展的主要机理。不同背水面坡度下的沿程冲刷阶段冲蚀特征基本相似,而溯源冲刷阶段及快速发展阶段溃决过程差异显著,较大的背水面坡度使溯源冲刷阶段跌坎水流更容易得到发展,进而影响溃口处的垂向冲深及侧向发展,导致快速发展阶段更易形成垂向落差较大的陡坎洪水冲蚀。从溃决历时来看,坡度的增加使溃口发展更快、峰值流量出现时间更早,进而导致溃决历时缩短。坝顶溃口宽度及峰值流量也会随着坡度的增加而增加。在本试验还较好地重现了天然堰塞坝下游河道两岸的淤积现象,并根据堰塞坝溃决过程中的水流特点、泥沙运动及溃决完成后下游河道的地貌,初步分析了淤积区的形成机理。  相似文献   

7.
堰塞坝是由滑坡等失稳地质体快速堆积并阻塞河道而形成的天然坝体,溃决后会对下游人民生命财产安全造成严重威胁。深入开展非均质结构对堰塞坝溃决过程的影响研究,可为堰塞坝灾害的风险评估和应急处置提供重要参考。依托自主研发的水槽试验装置,通过开展不同结构类型堰塞坝的溃决模型试验,分析了均质、竖向非均质和水平非均质结构对坝体溃决的影响。研究发现:1)堰塞坝侵蚀过程受局部区域材料性质影响严重。2)均质坝中,随着中值粒径增大,材料抗侵蚀能力增强,溃决特征先由层状冲刷变为陡坎侵蚀,再变为多级陡坎侵蚀,峰值流量逐渐减小,峰现时间逐渐推迟。3)竖向非均质坝中,坝体上部材料主要影响溃口形成阶段历时和坝前水位;中部材料主要影响溃口发展阶段的溃口下切速率;底部材料主要影响下游坡脚稳定性和残留坝体形态。受溃口加速下切和溃决流量增加彼此间相互叠加影响作用,中部及底部材料分布对峰值流量的影响最为显著。4)水平非均质坝中,坝体内部4个区域对溃口发展的影响不同。过流侧上方材料影响溃决前期的溃口下切速率;过流侧下方、对岸侧上方材料分别影响溃决中后期的溃口下切、展宽速率;对岸侧下方材料对溃口发展影响最小。泄流槽设计时,应考虑非均质结构的影响,基于坝体结构特征采用工程措施限制溃口深切、促进溃口展宽,以降低峰值流量。  相似文献   

8.
2018年10月10日和11月3日,西藏自治区江达县白格村金沙江右岸先后2次发生滑坡堵江事件,堰塞湖与溃坝洪水给金沙江上游沿岸居民及其生产和生活设施带来巨大灾害。滑坡发生后,作者先后2次赶赴现场,参与灾害调查与救灾工作。基于现场调查,结合相关资料,对滑坡的形成机制与过程进行系统分析。结果表明:1)白格"10·10"滑坡是一个高位、高剪出口、高速非完全楔形体基岩滑坡,方量约107 m~3。2)滑坡地处金沙江缝合带,岩性为元古界熊松群片麻岩组,具有多期、多次变形与变质特点,糜棱岩化和蚀变很严重。3)滑坡按高程划分为3区,即前缘的阻滑区、中部的主滑区和后缘的牵引区,分割高程大致为3 500和3 000 m。主滑区为楔形体,系2组发育良好的结构面切割形成;阻滑区为四面体,由2组发育较差的结构面切割形成;牵引区为完全风化的岩土体夹团块状碎裂岩体。4)滑坡存在2个滑动方向,即主滑区的S80°E方向和阻滑区的N70°E方向,剪出口高程约2 950 m。5)主滑区楔形体重力是滑坡的主要动力来源,滑坡的孕育过程是相对完整的阻滑区岩体在主滑区重力驱动下的渐进破坏过程。6)滑坡过程如下:首先,主滑区和阻滑区启动;其次,失去支撑的牵引区再启动;随后,先启动的滑体高速撞击四川岸,逆坡爬高约95 m,并在两侧形成碎屑冲刷区;然后,先启动的滑体折返,并与后启动的滑体在河面上方相撞,冲击河水形成高速水砂射流,在两岸形成水砂射流冲刷区;而后,堰塞坝下游坡滑动,形成次级滑移区;最后,冲击产生的雨雾降落,完成滑坡坝表面冲刷。7)白格"11·3"滑坡是牵引区的部分岩土体在起阻滑作用的碎裂岩体渐进解体后下滑的结果,方量约3×106 m~3。8)牵引区目前严重变形的方量约5.50×106 m~3,存在再次滑坡与堵江的风险,需要采取合理的工程措施消除隐患。  相似文献   

9.
堰塞体一般在自然力作用下瞬间形成,堆积体具有空间结构复杂、坝料级配宽泛、稳定性差、易在水流冲刷下发生溃决等特点。堰塞体作为一种重大的水旱自然灾害,其安全评价和灾害预测是国内外学者关注的焦点,目前尚有很多问题需要解决,包括:(1)堆积体由天然宽级配土石料构成,表现出显著的状态相关性,缺乏正确描述这种宽级配堆石料的状态相关剪胀理论与本构模型;(2)堰塞体形成后,会受上游堰塞湖水位抬升、持续非稳定渗流、湖区滑坡涌浪、后期地震等外荷载作用的影响,缺乏稳定性评判的标准和方法;(3)堰塞体缺乏必要的洪水溢流设施,容易发生溃决,且溃决水流冲蚀过程呈明显的非线性特点,溃口水力要素指标呈强非恒定流特征,缺乏反映宽级配堰塞体材料冲蚀机理的溃决过程数学模型。为此,有必要采取现场勘查、多尺度物理模型试验、数值仿真等综合手段开展研究,揭示堰塞体外观形态、内部结构和材料宏观力学特性及其时空变异规律,提出状态相关(级配、孔隙比、应力水平)的宽级配堰塞体材料剪胀方程,建立能适应复杂应力路径的广义弹塑性本构模型与坝体极限平衡分析方法;开展大型水工模型试验和溃坝离心模型试验研究,揭示非恒定流作用下堰塞体材料的动态冲蚀特性与堰塞体溃口演化规律,建立非恒定流作用时溃口动边界条件下的挟砂水流冲蚀方程,提出考虑流固耦合的堰塞体溃决过程数学模型,实现堰塞体漫顶或渗透破坏溃坝全过程水流运动特征、坝料输移规律、溃口演化过程及结构失稳的数值模拟。综合可靠度理论与溃坝过程数值模拟方法,提出能考虑流固耦合的堰塞体渗流、变形、稳定和溃决过程的一体化数值仿真平台,构建堰塞体全生命周期安全评价与灾变模拟理论体系与方法,为提升我国堰塞体防灾减灾决策水平提供科学的理论与技术支撑。  相似文献   

10.
2018年10月10日和11月3日,西藏自治区江达县波罗乡白格村金沙江右岸同一位置先后两次发生滑坡堵江事件并形成了巨大的堰塞湖,其堰塞坝在自然泄流和人工开挖泄流槽两种处置方式后溃决。其中,第二次滑坡堰塞坝的溃决洪水给下游西藏、四川和云南3省(自治区)受灾范围内的道路、桥梁、耕地和房屋造成了巨大破坏。为了应对类似的极端、超常规、特大堰塞坝溃决洪水威胁以及相关的基础性研究需要,课题组于2018年12月21日至29日对这次金沙江白格堰塞湖溃坝洪水对下游的受灾情况进行了考察调研。考察以受灾最为严重的巴塘县巴楚河(又称巴曲河)与金沙江的交汇口为起点,直至洪水威胁基本消除的梨园水库库区为终点沿江共计488.6km的受灾河段为主。考察重点为沿岸房屋、道路、桥梁和水利基础设施等受损情况,并对溃坝洪水的最大淹没水位(洪痕)、考察时的河道水位,河道两岸堆积的泥沙及其颗粒级配,桥梁致灾水位等进行了分析,得到了一些有价值的灾情数据与成果,这些成果可为进一步的基础性研究提供一定的数据支撑。  相似文献   

11.
开发既能较准确地模拟锚索的力学特性,又能用于大型3维计算的锚索单元,对比分析铺设锚索与否对边坡稳定性的影响。根据某水电站坝址地质图建立边坡3维地质模型,并参照锚索的分布在该模型上用缆索元模拟锚索群,每根锚索的锚固段与周围岩体都处理为耦合,按照实际情况给锚索施加预应力,考虑有/无锚索的2个模型,以施工进程的方式进行有限元分析。结果表明:锚固模型的位移值和多点位移计实测值的趋势和峰值都较为吻合;该边坡在锚固后,绝大部分位置的位移值均有减小,特别是1 730坝基平台处的位移值下降到未进行锚固时的1/3。该锚索单元能有效地模拟锚索群,且具备较高的精度;锚固后边坡的整体稳定性有较大提升。  相似文献   

12.
堰塞坝是由崩塌、滑坡、泥石流等斜坡失稳体堵塞河流而形成的天然坝体。我国是堰塞坝的高发区,在作者统计的全世界范围内堰塞坝案例中,发生在我国的高达758例,占比59%。近年来,频发的地质构造活动和极端气候灾害(台风、暴雨、融雪等)诱发了大量的堰塞坝,严重威胁所在流域的生命财产安全。崩滑碎屑体堵江形成的堰塞坝通常结构松散、稳定性差、溃决程度大、溃决速度快,容易形成巨型洪灾,对下游生命财产造成更大危害。首先简要总结了一般堰塞坝堵江研究,阐明了崩滑型堰塞坝成坝特点。然后分析崩滑碎屑体运动及破碎机理和碎屑体堵江成坝机理研究,明确了颗粒破碎和水流条件对坝体形态特征、物质组成和稳定性的作用。崩滑碎屑体堵江通常有3种成坝模式:滑入型、爬高型和折返型,不同类型堰塞坝的稳定性具有显著差异。堰塞坝的稳定性与坝体关键特征参数(几何形态、坝体结构和物质组成)密切相关,而坝体特征参数又主要由崩滑体在运移过程中碰撞破碎和入河堵江时的固液耦合作用共同决定。考虑上述两种因素,结合物源性质、边坡地形、河谷及水流条件,本文提出了成坝影响因素与堰塞坝的空间形态、结构特征及稳定性的内在关系的研究思路,以便建立基于坝体稳定性快速评价的坝体特征预测模型。本研究的开展可为堰塞坝形成前坝体特征的事先预测以及堰塞坝形成后坝体稳定性的快速评估等方面的研究与实践提供重要理论依据。  相似文献   

13.
以"汉江中游任河流域镇巴县幅地质灾害调查及专题研究"项目为依托,基于区域地质环境概况、遥感解译与野外实地考察,研究了镇巴县幅地质灾害的发育规律。在此基础上,选择坡高、坡度、坡形、降雨量、工程地质岩组、距断层距离、距河流距离、人类工程活动与灾害点密度9种评价因子,采用层次分析法建立各评价因子的判断矩阵,确定地质灾害危险性评价指数,对镇巴县幅地质灾害危险性进行评价和分区。结果表明:(1)镇巴县幅地质灾害类型主要为滑坡、崩塌、泥石流,其中滑坡93处,崩塌6处,泥石流4处;(2)地质灾害多发育在坡形为凹凸面坡、坡度为0°~10°、起伏度为0~30 m的斜坡中,且集中分布在河谷两侧的高程为500~800 m的低山区;(3)地质灾害危险性可分为高、中、低三类,面积分别为62.05、143.43、224.57 km2。高危险区主要分布在泾洋河流域,占总面积的14.4%。  相似文献   

14.
五里坝水库是一座采用0.3~0.67 m变厚面板的堆石坝,最大坝高67.4 m.由于坝基为软质岩、强度低,地质条件较复杂,结合工程特性,围绕减少岸坡开挖和填筑工程量,降低坝体不均匀沉降,确保良好防渗止水效果等关键问题进行详细计算分析.优化设计出满足规范要求的大坝枢纽布置、坝体分区、填筑材料和坝基处理等方案,为工程投资决策提供了重要依据.  相似文献   

15.
To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of the 34,600 profile are obtained on the basis of hydrology, geology, and monitoring data.The residual thrust method is utilized to calculate the stability coefficients, which are 1.225 and 1.00 under sound and transfixion conditions, respectively. According to the rock damage and fragmentation and the principle of mechanical parameter degradation, the mechanical models of the slide mass development of the hard and soft rock slopes are established. An integrated model for calculating the slope stability coefficient is built considering water, vibration, and other external factors that pertain to the structural plane damage mechanism and the generating mechanism of the sliding mass. The change curve of the stability coefficient in the slide mass development is obtained from the relevant analyses,and afterwards, the stability control measures are proposed. The analysis results indicate that in the cracking stage of the hard rock, the slope stability coefficient decreases linearly with the increase in the length Lbof the hard rock crack zone. The linear slope is positively correlated to rock cohesion c. In the transfixion stage of the soft rock, the decrease speed of the stability coefficient is positively correlated to the residual strength of the soft rock. When the slope is stable, the stability coefficient is in a quadratic-linear relationship with the decreased height Dh of the side slope and in a linear relationship with anchoring force P.  相似文献   

16.
岩石的碎裂化作为高速远程滑坡中的一种重要现象,其不仅是颗粒流假说的基础,也涉及到滑坡能量的耗散与传递作用。本文以西藏八宿县瓦来滑坡为例,通过遥感影像解译、野外调查和粒度试验等方法,对山谷型高速远程滑坡的地貌特征、堆积结构、运动学过程及碎裂化特征进行了分析和探讨。基于无人机航测数据构建的高精度数字高程模型,对瓦来滑坡的地貌结构进行了定量化分析。依据等高线特征与基岩分布特征重建了滑坡前地形并对瓦来滑坡的体积进行了估算。研究结果表明,瓦来滑坡是一个滑动面受节理控制的碎屑流型高速远程滑坡,其水平运动距离为3480m (H/L=0.32),其堆积方量约为5.12×10^7 m^3。瓦来滑坡的主要地貌结构有修剪线、巨型丘、纵向脊和压缩脊,这些地貌结构指示了滑坡启动后朝向NE48°方向运动,遇到山体阻挡后偏转向北。瓦来滑坡的外壳相较薄,明显受到岩层节理控制;滑体相中的堆积结构以分层结构、拼图结构、块石定向排列、块石剪切破坏为主,这些结构指示瓦来滑坡的层流运动特征,且其运动过程中,内部存在碰撞作用与剪切作用。滑体相中粒度沿程的变化特征表明瓦来滑坡的内部破碎主要发生在从滑坡源区经过流通区到坡脚的撞击过程中,为强破碎阶段;细颗粒的粒度分布特征和发育不明显的细粒剪切带指示该滑坡在径向运动阶段的破碎作用相对前者较弱,为弱破碎阶段。  相似文献   

17.
2018年10月10日和11月3日,金沙江上游白格滑坡两次滑动形成堰塞湖,对下游造成了巨大破坏。目前其滑源区边界外仍存在K1、K2和K3等3处规模较大的残留体,有再次失稳堵江的可能性,对下游4座在建水电站构成威胁。受滑坡区自然地理地质条件制约,对白格滑坡残留体的规模、可能的失稳模式、一次失稳体积等方面的研究工作较少,不能为金沙江上游相关建设风险管理提供支撑。针对上述问题,2019年对滑坡残留体开展了精细地形测量、变形现象详细调查、深部结构探测等工作,系统分析了三处残留体的体积、失稳方式、可能的失稳组合;在考虑失稳体的铲刮效应、运动轨迹、松方系数等基础上对残留体入江规模进行了分析;根据河谷地形数据,基于PFC3D软件模拟和“10·10”、“11·3”两次白格堰塞体的形态特征,对不同失稳规模进行了堰塞体堆积形态预测。结果表明,三处残留变形体体积分别为159.3×104m3、460×104m3、142×104m3;滑坡残留体存在小规模坍塌、大范围卸荷变形、一定规模岩土滑移失稳三种变形破坏形式;最危险失稳工况以1-4、2-1、3-1、3-2四个亚区同时失稳可能性最大,失稳总体积达271×104m3;白格滑坡残留体不同失稳工况下,沿主滑槽入江堆积最大堆积高度47.5m,堆积高程2937.5m。沿白格滑坡凹槽上游斜坡入江堆积最大堆积高度28.7m,堆积高程2923.7m。  相似文献   

18.
针对某水电站岩石高边坡的工程实际,为了有效的控制高边坡变形和准确的指导施工,在边坡布设了多套位移计和锚杆应力计,并且进行了边坡变形和应力监测。通过大量的边坡监测资料,并且结合变形、地质、开挖等因素,分析了边坡变形特征及锚杆的锚固效果,监测数据的分析主要采用回归方法进行。监测数据表明,边坡的锚固效果良好,边坡的变形得到了有效的控制。通过此岩石高边坡工程的施工监测,阐明信息化施工可以保证边坡的稳定性,正确指导施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号