首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
为了实现全风速条件下的功率调节,对双馈风力发电机组的功率控制策略进行了研究。额定风速以下采用基于叶尖速比的最大功率追踪控制,实现最大风能捕获;额定风速以上采用变桨距角控制,输出功率维持恒定,保证整个系统安全稳定地运行。利用MATLAB建模并进行了仿真,仿真结果表明:在较大的风速变化区间内,双馈风电机组能实现对输出功率的有效调节,两种功率控制策略切换时系统能保持较好的稳定性。  相似文献   

2.
介绍了漂浮式风力机模型及支撑结构的动力学模型,并针对风力机位于额定风速以上时的控制策略进行讨论,利用FAST软件对漂浮式风力机进行建模,分别采用恒转矩控制策略和恒功率控制策略对3种形式的漂浮式风力机进行仿真。结果表明,如果从降低风力机输出电功率波动的方面考虑,采用恒功率控制效果更好。    相似文献   

3.
直驱式永磁同步风电系统变桨距控制算法研究   总被引:3,自引:1,他引:2  
以直驱式永磁同步风电系统为研究对象,在各部分数学模型的基础上,建立了整个风电系统的模型。基于此模型,考虑到风电机组非线性强、转动惯量大导致变桨距控制困难的问题,提出了基于模糊自适应PID和模糊前馈结合的变桨距控制算法并对该算法进行了仿真。仿真结果表明,当风速高于额定风速时,该控制算法能有效地控制风电机组的输出。最后在相同风速条件下比较了该控制算法与模糊控制算法、传统的PID控制算法的控制效果。比较结果表明,当风速高于额定风速时,虽然3种控制算法均能控制风电机组的输出,但是与模糊控制算法和传统的PID控制算法相比,本文提出的算法具有更好的稳定性和动态特性。  相似文献   

4.
以三叶结构新型立轴风力机为研究对象,介绍了该风力机的数学模型建立过程及风力机工作过程中风速在额定风速以上时的浆距角控制策略,并运用MATLAB/SIMULINK模块对其进行了相应的仿真研究,仿真结果表明了该模型的合理性和控制方法的可行性.  相似文献   

5.
在介绍了风力发电机电动变桨距系统的基础上,以实现桨距角变化的精确控制为目的,对电动变桨距系统进行设计,并提出了变桨距系统控制器的设计方法.为了实现精确控制,在对变桨距系统建立仿真模型时重点考虑了传动系统的误差对桨距角控制的影响.针对风力发电系统的非线性、时变、强耦合的特点,将模糊控制引入到变桨距控制中,在高于额定风速的情况下,根据主控制器由风速变化计算出的桨距角变化量调节桨叶的位置.最后利用Simulink构建整个控制系统模型,对变桨距系统进行仿真.  相似文献   

6.
双馈式感应风力发电机组建模及其控制研究   总被引:3,自引:0,他引:3  
以双馈式感应风力发电机组(DFIG)为对象,分析了DFIG的建模和控制问题。该模型包括风力机模型、传动系统模型和发电机模型。提出了风力机的桨距角控制策略和发电机的转速控制策略。发电机转速控制采用dq同步旋转坐标下的矢量控制。用MATLAB/Simulink软件建立了DFIG模型,并且根据所提出的控制策略对风速随机变化以及系统电压突变时机组的运行情况进行了仿真。仿真结果验证了模型的合理性及控制策略的科学性和可行性。  相似文献   

7.
变速风力发电机模型参考自适应控制   总被引:7,自引:0,他引:7  
风力机系统是一个非线性不稳定的复杂系统,系统具有不确定性,模型很难建立。自适应控制研究对象就是这种具有不确定性的系统,它能通过修正控制器的参数来降低不确定性对系统的影响。采用模型参考自适应方法对变速风力发电机在额定风速下进行控制,使风力机获得最大风能。仿真结果表明此方法对额定风速下变速风力发电机的控制效果很好。  相似文献   

8.
利用风速分频原理,将风速分为稳态风速和动态风速。考虑低风速工况和高风速工况两种风速特性,分别提出了对发电机的转矩控制策略。当风力发电机运行在低风速工况条件下时,将模糊算法应用到风力发电机最大风能的捕获上,使风电机组的功率系数最大并保持恒定,从而实现了风力发电机在运行过程中最优功率控制的目标。通过MATLAB构建软件仿真平台,模拟仿真试验证明,在低风速工况条件下,该种模糊控制的方式是有效可行的。当风电机组运行在高于额定风速即高风速工况条件下时,对变桨动态控制器进行了设计,有效地解决了在风速测量时,调节桨距角惯性以及出现的滞后问题。  相似文献   

9.
研究风力发电仿真首先要研究风能特性的仿真。针对某风电场实测风速标本进行了基于高阶统计量时间序列的风速建模与仿真,不但解决了统计学风速模型不易实现且无法建立多种变化风速模型的问题,而且高阶统计量理论的应用消除了传统时间序列风速建模中把自然风完全等同于理想高斯过程所带来的误差,同时去除了测量噪声的影响。  相似文献   

10.
进行临近空间飞艇推进系统动态性能仿真可以预先调整部件参数,优化推进系统效率,减小太阳电池和锂电池重量。利用Matlab/Simulink建模仿真工具,通过对稀土永磁无刷直流电机多个独立功能模块的建立和组合,构建了基于PID以及PI控制的转速、电流双闭环串级控制电机仿真模型;根据螺旋桨的运动方程建立了螺旋桨的动态仿真模型。按照电机和螺旋桨的扭矩、转速匹配关系对各仿真模块进行协同化处理。利用集成化仿真模型,进行推进系统各部件参数匹配。得出推进系统功率30 kW时不同桨径推进系统的动态响应特性以及不同高度下最佳减速比,得出了6.8 m桨径推进系统的最佳额定工作点及其工作区域。  相似文献   

11.
MW级变速恒频风力发电机组的一种复合控制方法   总被引:2,自引:1,他引:1  
分析和建立了兆瓦级风力发电机组各部分机理模型以及有效风速的模型,针对变速恒频风力发电机组(VSCF)在低风速最大风能捕获和高风速额定功率保持的控制目标,提出了间接控制策略(ISC)和模糊滑模控制方案,并对一个实际系统在各种风况下进行仿真实验。仿真结果验证了系统控制策略的可行性,该变速变桨距风力发电系统在全风速下均能获得最佳功率,并且系统具有优良的鲁棒性。  相似文献   

12.
分析了风力机的基本特性,阐述了风力发电机组控制系统在低于额定风速时风力机的最大风能捕获及高于额定风速情况下的变桨距控制。在此基础上,利用SVM(support vector machines)优化风力机的风能利用系数以及变桨距控制系统的控制参数。仿真分析表明,风能转换系数的支持向量机模型具有很好的精度和泛化性能,而优化后的变桨距控制系统可对输出功率的调节获得较好的效果,保证风电系统的恒功率输出。  相似文献   

13.
变速恒频风力发电机组在额定风速以下的最大风能追踪(Maximum Power point Tracking,MPPT)效果对于机组的效率有很大影响。现有的最大风能追踪策略不论是功率控制模式还是转速控制模式都是无风速测量下的最大风能追踪策略。究其原因,就在于风速无法精确测量。引入时间序列法中的自回归滑动平均模型(ARMA)对风速进行超前一步预测。根据该预测风速的大小来确定下一时刻最优功率点搜索的起始风机转速,再利用变步长转速扰动的最大风能追踪策略(爬山法)找到最优功率点。仿真表明,时间序列法对风速具有较好的预测效果,有效地缩小了最优功率点的搜索区间,缩短了搜索时间,提高了机组的运行效率。  相似文献   

14.
针对变桨距风力机存在非线性、时变性、抗干扰性和滞后性等问题,在分析风力发电机组系统特性和变桨距控制要求的基础上,建立了风力发电机的数学模型,并对变速恒频风力发电机组在低于和高于额定风速运行时的变速桨距调节分别设计了两个模糊控制器,最后在Matlab/Simulink仿真软件上利用SimPower-Systems模块进行仿真.仿真结果表明本方法有效、可行.  相似文献   

15.
变桨距风力发电系统的滑模变结构控制   总被引:1,自引:1,他引:0  
讨论了变桨距风力发电系统在高风速时桨距控制问题。针对风力机系统的非线性,参数变化等特性,根据风力机机理,基于一定假设得到风力机在某一工况点线性模型,进而提出滑模变结构控制方案,充分利用变结构控制对被控对象的模型误差、对象参数的变化以及外部干扰有极佳的不敏感性的优点。对系统仿真时再加入系统的不确定性,仿真结果表明所提出控制方案的有效性,系统具有很好鲁棒性。  相似文献   

16.
在动态入流条件下,采用基于致动线模型的大涡模拟方法对一台1.5 MW的商用风力发电机组的转速、转矩以及输出功率的响应特性进行数值模拟.在对数风廓线模型的基础上,通过引入正弦波动获得动态入流边界条件.对风力机引入比例积分变桨距控制和转矩控制,实现对动态入流的追踪.研究结果表明,在当前的变桨距控制和转矩控制条件下,风力机的转速、转矩、输出功率能够很好地响应入流风速的变化.在风加速阶段,三者都在额定风速时达到额定值;当入流风速减到额定风速后,变桨距控制以及转速、转矩、功率的下降都存在10 s的延迟;模拟得到的功率曲线与风力机实际功率曲线整体上吻合良好,不过在风速小于9 m/s的区间段还存在着一定的偏差,有待于进一步优化.  相似文献   

17.
针对双馈型风电机组常用的模糊转速最大风能追踪控制方案动态性能上的不足,提出了一种以融合了风速、转速和功率信号的模糊逻辑系统来设定发电机最优转速的新型风能追踪控制方案,具有增强转速参考预判性,降低风速测量准确度影响的优点。仿真结果表明新方案提高了机组在低风速区域捕获风能的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号