首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 118 毫秒
1.
异波折板反应器处理低浓度废水启动研究   总被引:1,自引:1,他引:0  
针对处理低浓度废水的特点,采用具有相同处理对象的厌氧颗粒污泥接种启动,在启动期内,反应器的运行温度控制在28℃-32℃.为尽快提高反应器内污泥浓度,保证反应器的启动成功,刚启动时,应保持较高的进水COD浓度和容积负荷,待达到COD去除率稳定之后,再采用逐步加大水力负荷的方法提高容积负荷.水力负荷从初始的1.00m^3/m^3d提高到2.00m^3/m^3d,即相应的水力停留时间从24h减少到12h.  相似文献   

2.
UASB反应器处理青霉素废水启动特性的研究   总被引:1,自引:0,他引:1  
采用上流式厌氧污泥床(UASB)反应器,以高浓度青霉素废水为处理对象,研究了中温条件下UASB反应器的启动、厌氧颗粒污泥特性和废水处理效果。结果表明:接种消化污泥,水温33~35℃的条件下,采用逐步提高青霉素废水进水浓度的方式,运行80d后,可实现UASB反应器的启动。进水ρ(COD)达到4 000mg/L左右,COD去除率稳定在84%以上,容积负荷为3.36kg/(m3.d)(以COD计),产气量为5.9L/d;反应器内污泥实现颗粒化,粒径约为2mm。  相似文献   

3.
升流式厌氧污泥床处理啤酒废水的试验研究   总被引:2,自引:0,他引:2  
采用升流式厌氧污泥床(UASB)反应器处理啤酒废水,在UASB反应器流态分布模型的基础上,假设UASB反应器分为下部完全混合的厌氧污泥床系统,中部完全混合的污泥悬浮层系统和上部推流式三相分离区系统,在运行中的COD降解规律符合Monod方程,推导出UASB反应器的动力学方程式.从中可知,反应器运行情况和反应器的高度有关,反应器的最佳优化高度为4.5~6m,其中污泥床高度2~2.5m较为合适.试验结果证明,UASB反应器内存在明显的颗粒污泥区和污泥悬浮区,稳定运行COD的容积负荷可达6~6.5kg/m^3,COD去除率75%~80%左右,并具有启动速度快,颗粒污泥容易形成.耐冲击性负荷强等特点.  相似文献   

4.
混凝-UASB工艺处理豆制品废水的实验研究   总被引:1,自引:0,他引:1  
针对豆制品生产的废水问题,采用混凝一UASB工艺处理豆制品废水.实验表明:选用自制混凝剂和PAM进行混凝沉降实验,最佳实验条件为:每100mL废水中混凝剂(DHX)的加入量为1.7mL;搅拌时间为10s;PAM加入量为0.3mL;沉降时间为20min.COD的去除率达到68.9%.在生化处理阶段,采用上流式厌氧污泥床反应器(UASB),COD的容积负荷达到4.41kgCOD/m^3·d,COD的去除率在90%以上,出水达到《污水综合排放标准》(GB8978—1996)的一级排放标准.根据实验结果确定了生化反应的动力学参数.该工艺简单,处理效果较好,同时,对其他有机废水的处理具有借鉴意义.  相似文献   

5.
根据传统内循环厌氧反应器(IC)的工作原理,设计出一种新型双循环厌氧反应器(DIC),以高浓度自配水为水源,研究了DIC的启动过程,结果表明:经过6个多月的运行,当进水平均浓度为14521ms/L,水力停留时间为16.7h时,DIC反应器容积负荷可以达到20.9kgCODcr/(m^3.d),CODcr去除率平均值为83.1%。  相似文献   

6.
上流式厌氧污泥床 (UASB)这种工艺已广泛应用于食品、酒精及其它工业废水。米粉是我国独有的食品 ,文章应用UASB反应器对米粉废水的处理进行了实验研究。结果表明 :用厌氧颗粒污泥接种的UASB反应器 ,在37±1℃下运行两个月后 ,处理米粉废水容积负荷从3.5gCOD/(L.d)提高到13gCOD/(L.d),进水COD浓度在13000mg/L左右 ,COD去除率达94 %以上 ,产气正常。当再次提高负荷后 ,仅半个月时间 ,容积负荷从13gCOD/(L.d)增加到25gCOD/(L.d) ,进水为实际生产废水 ,停留时间从24小时缩短到12小时 ,COD去除率仍达92 %以上 ,产气率为0.35L/gCOD  相似文献   

7.
工程运行试验研究EC厌氧反应器处理啤酒废水启动过程中的运行效能、稳定性以及内部的污泥分布情况,分析颗粒污泥形成的关键因素.运行第95d,进水有机负荷达到8.5kg/(m3·d),COD去除率达80%,出水COD低于400mg/L;在系统1.2m和4m处污泥中均出现粒径为0.5~1.0mm左右的颗粒污泥.结果表明,EC厌氧反应器处理低质量浓度、大流量的啤酒废水采用间歇-连续快速启动方式是可行的,并且上升流速在2.5~5.0m/h有利于颗粒污泥的快速形成.研究证实EC厌氧反应器处理啤酒废水能够实现稳定、高效地启动运行.  相似文献   

8.
不同污泥源条件下ASBR启动对比研究   总被引:1,自引:0,他引:1  
厌氧序批式反应器(ASBR)实际应用的关键环节在于如何实现快速启动.为了缩短ASBR的启动时间,实验研究了接种不同污泥对快速启动的影响.分别接种市政污水处理厂的二沉池剩余污泥和升流式厌氧污泥床反应器(UASB)中的厌氧污泥.以淀粉为基质,在恒温35℃条件下,逐步增加进水COD浓度和缩短水力停留时间,经过75d的培养,泥粒径分别达到了1.1mm和1.4mm,有机负荷达到5.6kg/(m3·d),COD去除率分别达到85%和90%,出水VFA浓度均小于200mg/L,且系统运行稳定,均实现了ASBR的快速启动.  相似文献   

9.
在厌氧复合床反应器中进行了垃圾渗滤液的反硝化/产甲烷的试验.试验结果表明,处理有机物浓度较高的垃圾渗滤液时,反硝化/产甲烷能够在厌氧复合床反应器中实现同步进行.下部的污泥床承担了主要的反硝化任务,当进水COD/NO3-N>9时,下部污泥床对NO3-N的去除率可达到99%以上.随着进水COD浓度的提高,达到4 000 m...  相似文献   

10.
UASB污泥颗粒化试验研究   总被引:7,自引:3,他引:7  
目的研究上流式厌氧污泥床(UASB)污泥颗粒化过程以及污泥颗粒化过程中主要运行条件的影响.方法采用小试动态试验,接种普通厌氧消化污泥,控制反应器温度在(35±1)℃,交替增加进水COD质量浓度和进水流量,研究污泥颗粒化过程.结果经过60 d的运行,完成污泥颗粒化.此时进水COD质量浓度为6 936 mg/L,COD的容积负荷为10.40 kg/(m3.d),产气率达到0.40 m3/kg(以COD去除量计,以下同),COD去除率91.2%.结论控制启动过程中各运行条件,通过逐步增加反应器负荷,可以成功地培养出颗粒污泥.形成的颗粒污泥内部为黑色,外部包裹一层白色黏性物质,粒径大部分在2~4 mm.  相似文献   

11.
为缩短UASB工艺处理低温城市污水的启动周期,开展在原水中添加水厂生产废水强化UASB系统污泥颗粒化可行性研究,并以常规启动方式做为比较,对启动过程中系统运行特性和形成的颗粒污泥特性进行探讨。试验结果表明,在水温为15℃,初始有机负荷为0.25kgCOD/(m3.d)的条件下,采用逐步提高负荷的传统启动方式和添加生产废水的强化启动方式都能实现UASB工艺的低温启动,相应的启动周期分别为120d和95d左右。在整个启动过程中,添加生产废水启动方式对有机负荷提高适应性较强,达到4kgCOD/(m3.d)时较常规方式缩短30d,而且具有较高的COD去除效率和微生物增长速率(分别为0.029g VSS/d和0.043g VSS/d)。与常规启动方式相比,强化启动方式颗粒粒径较大,在第95d内可形成2mm粒径颗粒污泥。采用添加生产废水的启动方式能够缩短UASB工艺的启动周期并强化污泥颗粒化,提高低温城市污水的处理效率和运行稳定性。  相似文献   

12.
试验采用实验室装置和现场中试装置以阜阳金种子酒厂废水为进水,采用IC厌氧反应器+SBAR反应器中试处理工艺,IC厌氧反应器的进水COD和NH4+-N浓度分别为30000mg/L和160mg/L,出水浓度COD和NH4+-N达到1000mg/L和70mg/L左右,一、二级IC厌氧反应器COD去除率分别达到85%、75%以上,NH4+-N去除率分别在22%、17%左右;SBAR反应器的水力停留时间是480 min,COD容积负荷达到4.0 Kg COD/(m3d),出水COD、NH4+-N去除率分别稳定达到在92%、79%以上,出水pH值在7.0以上.该工艺处理最终出水COD和NH4+-N浓度则分别低于100mg/L、10mg/L.出水均达到《发酵酒精和白酒工业水污染排放标准》(GB27631-2011).  相似文献   

13.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

14.
采用IC-ALR的新型工艺处理含有大量蛋白质、碳水化合物的去油脂泔水。结果表明,在适应期采用快速提升负荷的方式有利于提高污泥的活性,加速污泥颗粒化;稳定运行期,当进水有机浓度达到22.4 g/L时,COD去除率高达91.7%,出水中9.2~10.1 mmol/L的VFA含量不会影响IC的稳定运行。利用ALR处理IC厌氧消化液,当进水COD和NH3-N浓度分别达到1 850和420 mg/L时,ALR反应器能够去除进水中75%的COD和91%的氨氮,出水COD和NH3-N浓度分别为420和40 mg/L。  相似文献   

15.
采用厌氧膨化床(AEBR)+快速渗滤土地处理系统(CRI)处理小城镇污水,装置启动后,厌氧膨胀床和土地快速渗滤系统的容积负荷分别为0.71 kgCOD/(m3.d)和0.012 kgCOD/(m3.d);AEBR的水力停留时间为4.5 h,回流比为400%;CRI的水力负荷为0.02 m3/(m2.d),湿干周期比约为1∶6。系统在稳定运行期对COD、总氮、氨氮、总磷的平均去除率分别达到83%、85%、87%、79%,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)规定的一级标准。AEBR+CRI处理城镇污水的污泥产率低,约为0.04 kgVSS/kgCOD。  相似文献   

16.
通过聚乙烯醇(PVA)缩甲醛交联反应制备的凹土/PVA多孔载体,具有比表面积大、孔隙丰富、挂膜启动速度快、附着生物量大等特点,应用于生物流化床处理有机废水可取得较好的处理效果。20d挂膜启动试验表明,在凹土/PVA多孔载体投加量(堆积体积)为曝气区容积20%的条件下,模拟废水进水COD1000~3000 mg/l,进水COD负荷不超过8.7kg·m-3·d-1时,COD去除率可保持90%以上。对氨氮也有较高的去除能力,进水氨氮浓度100 mg/l以内,停留时间为12 h时,稳定运行时氨氮去除率可保持在90%以上。  相似文献   

17.
从若干菌群中选育分离出高效降解屠宰废水的优势菌种,将低温保存的优势菌种活化与流化床内的载体混合,在启动过程中逐步提高进口浓度、水力停留时间、空气流量来完成流化床载体接种优势菌种形成生物膜.结果表明:表观气速不超过1.08 cm/s、水力时间不超过4h有利于活性炭挂膜;启动成功后,有机容积负荷达6.34 kg COD/(m3 ·d),COD去除率保持在85%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号