首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
《Ceramics International》2022,48(6):8325-8330
In this work, we propose a facile approach to fabricate Ti4+-doped Li3V2(PO4)3/C (abbreviated as C-LVTP) nanofibers using an electrospinning route followed by a high temperature treatment. In this designed nanocomposite, the ultrafine LVTP dots are homogeneously dispersed into one-dimensional carbon nanofibers and the Ti4+ doping does not destroy the crystal structure of monoclinic Li3V2(PO4)3. Compared to the undoped Li3V2(PO4)3/C (abbreviated as C-LVP), the as-fabricated C-LVTP fibers present higher reversible capacity, superior high-rate capability as well as better cyclic property. Especially, the C-LVT7%P cathode delivers not only high capacities of 187.2 and 160.3 mAh g?1 at 0.5 and 10 C respectively, but also stable cyclic property with the reversible capacity of 135.8 mAh g?1 at 20 C following 500-cycle spans. The good battery characteristics of C-LVT7%P can be mainly ascribed to Ti4+ doping, which can increase the electrical conductivity and Li+ diffusion coefficient.  相似文献   

2.
《Ceramics International》2020,46(15):23773-23779
Lithium-rich layered oxides with high energy density have been intensively investigated as advanced lithium-ion batteries cathode materials. However, capacity degradation and voltage decay caused by irreversible lattice oxygen loss and structural transformation during cycling restrict their application. Herein, we proposed a high valance cations Nb5+ doping strategy and synthesized a series of Li1.2Mn0.54-x/3Ni0.13-x/3Co0.13-x/3NbxO2 (x = 0, 0.01, 0.02 and 0.03) cathode materials. The effects of Nb5+ doping on crystallographic structure and electrochemical property were systematically studied. In virtue of the large ionic radii and strengthened Nb–O bonds, the doped samples present commendable structural stability and expanded interlayer spacing for Li-ions migration, which ensures the upgraded cyclic stability and rate performance. In particular, the electrode with x = 0.02 delivers a discharge specific capacity of 265.8 mAh g-1 at 0.2 C with decelerated voltage decay, while 86.9% capacity are remained after long-term cycles. Moreover, excellent discharge specific capacity of 153.4 mAh g−1 is still attained at 5 C accompanied with enhanced Li-ion diffusion kinetics.  相似文献   

3.
《Ceramics International》2021,47(24):34218-34224
An enhanced sol-gel combustion method was used to synthesize different porous Sc3+-doped Li3V2-xScx(PO4)3/C (x = 0.00, 0.05, 0.10 and 0.15) compounds. The substitution of Sc3+ into the V3+ sites of Li3V2-xScx(PO4)3/C expands the lattice volume along with the enlargement of Li+ diffusion channel, which is beneficial for Li+ transportation and ionic conductivity improvement. Besides, the Sc3+ doping content exhibits a great impact on the morphology of Li3V2-xScx(PO4)3/C composite. The pristine Li3V2(PO4)3/C are constituted of porous particles and nanorods, and the ratio of nanorods to particles can be controlled by adjusting the amount of Sc3+ doping since the ratio of nanorods to particles decreases with increasing Sc3+ doping content. When Sc3+ doping content increases to a certain level (x = 0.15, Li3V1.85Sc0.15(PO4)3/C), the nanorods are hardly seen. Li3V1.90Sc0.10(PO4)3/C with higher tapped density, better reversibility, smaller resistance and larger Li+ diffusion coefficient demonstrates outstanding rate performance and cyclic stability, together with high specific discharge capacities of 130.2 and 92.9 mAh g−1 at 0.5 and 20 C, respectively. Furthermore, a superior specific discharge capacity of 85.8 mAh g−1 was retained at 20 C following 1000 cycles. Overall, a novel approach for the preparation of high-performance Li3V2-xScx(PO4)3/C cathodes with different morphologies for lithium-ion batteries is provided.  相似文献   

4.
Lithium-rich cathode materials Li1·2Mn0·54Ni0·13Co0·13O2 (LMNCO) are prepared by sol-gel method using dl-lactic acid as chelating agent. The effect of pH on crystal structures, morphologies, particle sizes, and electrochemical properties of cathode materials are studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM), nanoparticle analysis, charge–discharge tests, and electrochemical analysis. The Li1·2Mn0·54Ni0·13Co0·13O2 cathodes exhibit well-ordered layered structures consisting of hexagonal LiMO2 and monoclinic Li2MnO3 with smooth surfaces and well-crystallized particles (100–500 nm). LMNCO-7.0 exhibits smaller particle sizes than LMNCO-5.5 and LMNCO-8.5 and better electrochemical performance. The first discharge capacity and Coulombic efficiency of LMNCO-7.0 are 232.31 mAh g?1 and 73.2%, respectively. After 50 cycles, discharge capacity of LMNCO-7.0 decrease to 194.93 mAh g?1. LMNCO-7.0 cathode shows superior discharge capacity and rate performance due to its low charge transfer impedance and small average quasi-spherical particle diameter.  相似文献   

5.
Li2ZnTi3O8@α-Fe2O3 composites have been successfully prepared by a facile hydrothermal process. Li2ZnTi3O8/α-Fe2O3 composites show similar irregular spherical morphologies like Li2ZnTi3O8 and relatively smaller particle sizes than pristine Li2ZnTi3O8. Among all Li2ZnTi3O8/α-Fe2O3 composites, Li2ZnTi3O8/α-Fe2O3 composite (5 wt%) exhibits the best electrochemical properties. Li2ZnTi3O8/α-Fe2O3 composite (5 wt%) delivers a reversible charge capacity of 184.8 mAh g?1 even at 1000 mA g?1 after 500 cycles, while pristine Li2ZnTi3O8 only delivers a reversible charge capacity of 110.7 mAh g?1. The strong covalent bonds between Li2ZnTi3O8 and α-Fe2O3 will be formed, which is beneficial for the reduction of interfacial energy and thus helpful for the stabilization of the composite. Because of the special synergistic effect of the multi-phase interface, Li2ZnTi3O8/α-Fe2O3 composites not only possess the advantages of single components but also show novel and attractive performances, such as the enhanced ionic conductivity, reduced interfacial charge transfer impedance, improved migration rate of lithium ions, and the enhancement of the rate performance and reversible capacity. The as-prepared Li2ZnTi3O8/α-Fe2O3 composites reveal important potentials as anode materials for next-generation rechargeable Li-ion batteries, and this work also offers an effective strategy to design high performance lithium storage materials for advanced lithium-ion batteries.  相似文献   

6.
Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability.  相似文献   

7.
《Ceramics International》2023,49(5):8112-8120
Manganese monoxide (MnO) has been widely studied as a potential anode material of Li-ion batteries because of its high specific capacity and abundant raw materials. However, the poor cycling stability of MnO associating to its large volume change during the repeated conversion reaction with Li+ has restricted its practical applications. Herein, ternary MnO/MnTiO3@C composite anode materials are prepared by in situ capturing TiO2 nanoparticles into sea urchin-like MnO2 in a mild hydrothermal reaction, followed by resorcinol-formaldehyde (RF) resin coating and thermal treatment. With the strong stabilization effect of the MnTiO3 component, the optimized ternary MnO/MnTiO3@C composite anode exhibits greatly enhanced cycling performance as compared to MnO@C. A reversible capacity of 383 mAh g?1 is preserved after 500 cycles at 1000 mA g?1. This improved cycle performance can be originated from the stable TiO crystals and the highly reversible amorphous LixMnTiO3 phase generated in the first lithiation process. The reasonably high specific capacity and robust cycle stability enable the ternary MnO/MnTiO3@C composites to be promising alternative anode materials to graphite for Li-ion batteries.  相似文献   

8.
In this work, a reasonable strategy for the construction of Li2ZnTi3O8@Na2WO4 composite was employed to promote the Li storage performances of Li2ZnTi3O8. The Li2ZnTi3O8@Na2WO4 composites (5, 10, and 15 wt%) were then prepared by a solution dispersion method. The introduction of Na2WO4 does not change the structures of the samples and they show similar morphologies with particle sizes from 100 to 200 nm. Suitable amount of Na2WO4 modification effectively improves the electrochemical performance of Li2ZnTi3O8. Li2ZnTi3O8@Na2WO4 composites (0, 5, 10, and 15 wt%) deliver the discharge/charge capacities of 137.4/136.4, 164.2/162.3, 189.2/188.1, and 154.5/153.3 mAh g?1 at 0.5 A g?1 after 100 cycles, respectively. Li2ZnTi3O8@Na2WO4 composites (10 wt%) has the highest reversible capacities among all samples. The Na2WO4 shell with an excellent electronic conductivity can reduce electrode polarization, decrease the charge transfer resistance, enhance the Li-ion diffusion coefficient of Li2ZnTi3O8, and then improve the electrochemical kinetics of composites. In addition, the formation of Ti–O bonds at the interface can be helpful for the stabilization of the composite, being beneficial for the improvement of their cycling stabilities. These results reveal that Na2WO4 coating is a facile and effective strategy to promote the Li storage performance of Li2ZnTi3O8.  相似文献   

9.
Three different synthetic routes, including solid-state reaction, sol–gel and hydrothermal methods are successfully used for preparation of Li3V2(PO4)3/C. Ascorbic acid is used as a reducing agent and/or as a chelating agent. The Li3V2(PO4)3/C synthesized by hydrothermal method with fine particles exhibits lower impedance and smaller potential difference values between oxidation and reduction peaks than those by solid-state reaction and sol–gel methods. Thus as cathode material for Li-ion batteries, the Li3V2(PO4)3/C synthesized by hydrothermal method shows higher discharge capacity, better rate capability and cyclic performance. Even at a high charge–discharge rate of 10 C, it still can deliver a discharge capacity of 101.4 mAh g−1 and 106.6 mAh g−1 in the potential range of 3.0–4.3 V and 3.0–4.8 V, respectively. The hydrothermal synthesis has been considered to be a competitive process to prepare Li3V2(PO4)3/C cathode materials with excellent electrochemical performances.  相似文献   

10.
《Ceramics International》2022,48(18):26196-26205
Sea urchin-like LiAlO2@NiCoO2 hybrid composites with core-shell structure assembled with nanoneedles have been successfully fabricated through a facile hydrothermal route followed by a calcination procedure in N2 for the first time. The sea urchin-like architecture with large accessible surface can offer numerous active sites for redox reaction. The synergy of two advantages has dramatically improved the electrochemical behavior in terms of specific capacity, cycle performance and rate capability, especially at high current densities. The LiAlO2(5.0 wt%)@NiCoO2 displays charge capacities are 1309.0 and 933.6 mAh g?1 at 0.5 and 1A g?1, respectively, after 400 cycles. However, the charge capacities of bare NiCoO2 are only 562.9 and 476.7 mAh g?1 at corresponding rates. Especially, LiAlO2(5.0 wt%)@NiCoO2 preserves 358.1 mAh g?1 after 500 cycles at 2A g?1 with a capacity retention of 74%. The superior electrochemical property is related to the sea urchin-like nature and the ingenious composition design. In addition, the DFT calculation result shows that the formed stable, well-coordinated, and metallic interface between LiAlO2 and NiCoO2 are very helpful for reducing the interfacial impedance and beneficial for the improved rate capability of the materials. Therefore, such LiAlO2@NiCoO2 composites with unique morphology demonstrate a huge potential as electrode materials for Li-ion batteries.  相似文献   

11.
《Ceramics International》2022,48(18):26539-26545
As well established, the morphology and architecture of electrode materials greatly contribute to the electrochemical properties. Herein, a novel structure of mesoporous coral-like manganese (III) oxide (Mn2O3) is synthesized via a facile solvothermal method coupled with the carbonization under air. When fabricated as anode electrode for lithium-ion batteries (LIBs), the as-prepared Mn2O3 exhibits good electrochemical properties, showing a high discharge capacity of 1090.4 mAh g?1 at 0.1 A g?1, and excellent rate performance of 410.4 mAh g?1 at 2 A g?1. Furthermore, it maintains the reversible discharge capacity of 1045 mAh g?1 at 0.1 A g?1 after 380 cycles, and 755 mAh g?1 at 1 A g?1 after 450 cycles. The durable cycling stability and outstanding rate performance can be attributed to its unique 3D mesoporous structure, which is favorable for increasing active area and shortening Li+ diffusion distance.  相似文献   

12.
The Li3V2(PO4)3/C cathode materials are synthesized by a simple solid-state reaction process using stearic acid as both reduction agent and carbon source. Scanning electron microscopy and transmission electron microscopy observations show that the Li3V2(PO4)3/C composite synthesized at 700 °C has uniform particle size distribution and fine carbon coating. The Li3V2(PO4)3/C shows a high initial discharge capacity of 130.6 and 124.4 mAh g−1 between 3.0 and 4.3 V, and 185.9 and 140.9 mAh g−1 between 3.0 and 4.8 V at 0.1 and 5 C, respectively. Even at a charge–discharge rate of 15 C, the Li3V2(PO4)3/C still can deliver a discharge capacity of 103.3 and 112.1 mAh g−1 in the potential region of 3.0–4.3 V and 3.0–4.8 V, respectively. Based on the analysis of cyclic voltammograms and electrochemical impedance spectra, the apparent diffusion coefficients of Li ions in the composites are in the region of 1.09 × 10−9 and 4.95 × 10−8 cm2 s−1.  相似文献   

13.
《Ceramics International》2022,48(6):7687-7694
A novel negative material consisting of graphene nanotubes and ultrathin MoS2 is synthesized by a simple one-step hydrothermal method assisted with Sodium chloride. The MoS2/Graphene electrodes deliver a specific capacity of 1350 mAh g?1 under 0.1 A g?1 and high rate capability (retaining 85.5% capacity from 0.1 A g?1 to 0.8 A g?1). A high remarkable capacity of 820 mAh g?1 can still be recovered at 0.5 A g?1 after 500 cycles, and the average coulombic efficiency was as high as 99.98% during the additional 500 cycles. The excellent Li-ion storage performance of MoS2/Graphene nanotubes may be attributed to the ultra-thin MoS2 flakes and curled graphene nanotubes. This structural feature has a strong adsorption capacity for lithium ions, which can provide a broad space for ion storage. A large number of active sites dispersed in the layered molybdenum disulfide promote the kinetics of the electrochemical reaction, empowering the ultra-thin layered molybdenum disulfide to get a higher theoretical capacity. In addition, the existence of the tubular structure alleviates volume expansion and provides a way for the rapid movement of electrons and diffusion of Li+ during repeated cycles.  相似文献   

14.
《Ceramics International》2021,47(22):31597-31602
Lithium-ion batteries (LIBs) present the advantages of long cycle life, high voltage, and energy density and are widely made in the field of energy storage. LiVOPO4 (LVOP), a cathode material used in LIBs, has a high conceptual capacity of 159 mAh g−1 and high operating voltage of 3.9 V. However, its low electrical conductivity and cycle performance limit its commercial applications. According to the X-ray diffraction results, orthogonal crystal LVOP and monoclinic crystal Li3V2(PO4)3 (LVP) coexisted in the synthesised composite material. The transmission electron microscopy results also indicated that the LVOP and LVP phases coexist, which were coated by carbon layer of about 2.5 nm. The discharge of LVOP–LVP composite material initially was 143.2 mAh g−1, and that after 120 cycles was 132.2 mAh g−1 (at 0.1 C and 3–4.5 V). Thus, the electronic conductivity and first discharge specific capacity of the material enhanced due to the introduction of fast ion conductor LVP into LVOP. Electrochemical performance improved because the introduction of LVP led to an increase in Li+ pervasion channels in the original material and the acceleration of the Li+ transmission speed.  相似文献   

15.
The presented work compared the etching behavior between combustion synthesized Ti3AlC2 (SHS-Ti3AlC2) and pressureless synthesized Ti3AlC2 (PLS-Ti3AlC2). Because the former had a more compact structure, it was harder to be etched than PLS-Ti3AlC2 under the same conditions. When served as anode material for Li-ion batteries, SHS-Ti3C2 showed much lower capacity than PLS-Ti3C2 at 1?C (52.7 and 87.4?mAh?g?1, respectively) due to the smaller d-spacing. Furthermore, Potentiostatic Intermittent Titration Technique (PITT) was used to determine the Li-ion chemical diffusion coefficient (DLi+) of Ti3C2 in the range of 10?10 ??10?9 cm2 s?1, indicating that Ti3C2 could exhibit an excellent diffusion mobility for Li-ion.  相似文献   

16.
《Ceramics International》2017,43(14):11354-11360
Nitrogen-doped carbon-coated Li4Ti5O12-TiO2 (LTO-TO) hybrid microspheres were prepared by heat treating the dry mixture of urea and chemically lithiated dandelion-like TiO2 microspheres in a stainless steel autoclave at 550 °C for 5 h. The hybrid materials were tested as anode of Li-ion batteries. As compared to the pristine sample, the N-doped carbon-coated LTO-TO microspheres exhibited higher specific capacity at both low and high current rates. Discharge capacities of 184 and 123 mAh g−1 were obtained at 0.2 C and 20 C, respectively. Moreover, the LTO-TO/C electrode showed excellent cycle performance, with a discharge capacity of 121.3 mAh g−1 remained after 300 cycles at 5 C, corresponding to an average capacity degradation rate of 0.073% per cycle. These high specific capacity, excellent rate capability and cycle performance demonstrated the high potentiality of the N-doped carbon-coated LTO-TO microspheres as anode material of both energy storage-type and power-type Li-ion batteries.  相似文献   

17.
All-solid-state Li-ion batteries (LIBs) have recently attracted widespread attention for their high energy density and safety. Some research have conducted on the Li2ZrO3-based Li-ion conductor electrolytes, while there is little work on the conductivity below 100 °C, although it is very important for LIBs work around room temperature. Here, monoclinic Li2ZrO3-based ceramics are prepared via a wet chemistry method, and the conductivities of Li2ZrO3 ceramics are tuned by defect engineering of Al3+ ions introduction. The conductivity of Al-doped Li2ZrO3 reaches up to 3.06 × 10-4 S cm-1 at 25 °C, the related activation energy of conduction is less than 0.1 eV. Simulation calculation using bond valence site energy reveals that there is a two-dimensional Li-ion migration network in the crystal structure of Li2ZrO3.  相似文献   

18.
La-doped Li4Ti5O12 was successfully synthesized from Li2CO3, La2O3 and tetrabutyl titanate by a simple ball milling assisted modified solid-state method. The impact of La-doping on crystalline structure, particle size, morphology and electrochemical performance of Li4Ti5O12 was investigated. The samples were characterized by XRD, SEM, galvanostatically charge–discharge and electrochemical impedance spectroscopy. The results demonstrated that the in-situ coated and ball-milling method could decrease the particle size and prevent the aggregation of Li4Ti5O12. La-doping obviously improved the rate capability of Li4Ti5O12 via the generation of less electrode polarization and higher electronic conductivity. Li3.95La0.05Ti5O12 exhibited a relatively excellent rate capability and cycling stability. At the charge–discharge rate of 0.5 C and 40 C, its discharge capacities were 176.8 mAh/g and 54.7 mAh/g. After 10 cycles, fairly stable cycling performance was achieved without obvious capacity fade at 0.5 C, 1 C, 2 C, 5 C, 10 C, 20 C and 40 C. In addition, compared to Li4Ti5O12, Li3.95La0.05Ti5O12 almost did not have the initial capacity loss. It indicated that Li3.95La0.05Ti5O12 was a promising candidate material for anodes in Li-ion battery application.  相似文献   

19.
《Ceramics International》2020,46(9):12921-12927
The further development of clean energy requires the use of more stable and reliable energy storage system. In addition to lithium ion battery power supplies, sodium ion batteries also have prospects for application and development thanks to the low cost and abundant resource. NaTi2(PO4)3 has attracted much attention due to its three-dimensional channels for sodium ion transfer. In order to meliorate sodium storage properties of NaTi2(PO4)3 electrode, a facile strategy of Sn substitution at Ti sites was employed, and a series of electrodes were successfully synthesized through sol-gel route. The electrochemical performances of Sn substituted composites are significantly improved compared with bare NaTi2(PO4)3/C. And it was found that NaSn0.2Ti1.8(PO4)3 (NTP/C-Sn-2) delivers the largest capacity, and it also demonstrates the outstanding cycling performances. NTP/C-Sn-2 has discharge capacity of 131.1 mAh g−1 at 4 A g−1 in rate test and 121.4 mAh g−1 at 1 A g−1 after 1000 cycles in cycling test. The experimental results show that NaTi2(PO4)3/C with Sn substitution with proper content exhibits the great potential in anode for sodium ion batteries, and can further provide reference for next generation electrode materials and battery systems.  相似文献   

20.
The work presents the investigations of Li1.3Al0.3Ti1.7(PO4)3-xLiF Li-ion conducting ceramics with 0 ≤ x ≤ 0.3 by means of X-ray diffractometry (XRD), 7Li, 19F, 27Al and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy, thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density method. It has been shown that the total ionic conductivity of both as-prepared and ceramic Li1.3Al0.3Ti1.7(PO4)3 is low due to a grain boundary phase exhibiting high electrical resistance. This phase consists mainly of berlinite crystalline phase as well as some amorphous phase containing Al3+ ions. The electrically resistant phases of the grain boundary decompose during sintering with LiF additive. The processes leading to microstructure changes and their effect on the ionic properties of the materials are discussed in the frame of the brick layer model (BLM). The highest total ionic conductivity at room temperature was measured for LATP-0.1LiF ceramic sintered at 800 °C and was equal to σtot = 1.1 × 10−4 S cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号