首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Thickness and specific surface area of the film electrode are critical parameters for supercapacitors. The relationship between the thickness and the specific surface area of the film directly affects the capacitance and electrochemical stability performance of super supercapacitors, which virtually affects the contact chance of ion in the electrolyte on the surface of electrode and the ion transport path of electrode. In this paper, the CrN thin films with a thickness of 200–3500 nm are prepared using direct current magnetron sputtering. Atomic force microscopy (AFM) technique is introduced to investigate the relationship between thickness and the specific surface area of the CrN films. The electrochemical performances of CrN electrode with the nanoporousper structure is analyzed in different electrolytes H2SO4, Na2SO4 and NaCl aquous solutions. The specific surface area of the film increases linearly with the film thickness increases. The areal capacitance is also linearly related to the specific surface area. The spurtted CrN film with a thickness of 3370 nm has a specific surface of up to 43.59 cm2 per cm2 footprint area. Its areal and volume capacitances reache to 53.92 mF cm?2 and 650 F cm?3 at 5 mV s?1, respectively. In addition, the areal capacitance of CrN film electrode with 655 nm possesses reaches to 40.53 mF cm?2 for 0.5 M H2SO4 solution, 32.69 mF cm?2 for 0.5 M Na2SO4 solution and 9.17 mF cm?2 for NaCl solution at a scan rate of 5 mV s?1. Furthermore, the CrN film electrode exhibits excellent capacitance retention of 95.3%, 93.8% and 89.9% in H2SO4, Na2SO4 and NaCl electrolytes, respectively, after 2000 cycles. Therefore, the sputtered CrN thin film is an potential electrode material for electrochemical supercapacitors.  相似文献   

2.
In this study, the Ti-6Al-4V substrate was coated by CrN-CrN/TiN-TiN and CrN/CrAlN multilayer coatings using the cathodic arc physical vapor deposition (Arc-PVD) method. The results of potentiodynamic polarization (PDP) have shown the lowest and highest corrosion current density belong to the double-layer (0.16 µA/Cm2) and TiN (0.51 µA/Cm2) samples, indicating the higher corrosion resistance of the double-layer coating. The field emission electron microscope (FESEM), X-ray diffraction pattern (XRD), open circuit potential (OCP), PDP, and electrochemical impedance spectroscopy (EIS) analysis were employed in order to characterize the coatings and evaluate their corrosion behavior. Finally, applying the double-layer coating resulted in the significant improvement of the protective behavior of the Ti-6Al-4V alloy, as compared to the sample coated with TiN in corrosive environments.  相似文献   

3.
The active, carbon-supported Ir and Ir–V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl3 and NH4VO3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir–V/C catalysts. It was found that Ir/C and Ir–V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir–V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm−2 at 0.512 V and 70 °C in a real H2/air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm−2 in a H2/O2 condition shows good stability of anode Ir–V/C after 100 h of continuous operation.  相似文献   

4.
《Ceramics International》2021,47(21):30319-30330
Doping light elements into ceramic coatings on different metal substrates by anodic-spark electrolysis (ASE) to improve their properties, such as wear and corrosion resistance, has recently attracted a lot of attention. In this study, nitrogen-doped Al2O3 composite ceramic coatings had been fabricated in eco-friendly KOH–NaNO2 electrolytes using the anodic-spark electrolysis (ASE) method after 9 min at a fixed applied ASE voltage (75 V higher than the breakdown voltages). To deposit a nitrogen-doped coating with high amounts of oxynitride phases possible, we thoroughly studied the ASE coatings deposited in different total variable salts concentrations (KOH+NaNO2) and NaNO2/KOH ratios of ASE electrolytes. The coating properties were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), and the electrochemical impedance spectroscopy (EIS) tests. The results indicated that the coating produced in the KOH–NaNO2 electrolyte with a low total variable salts concentration (2 gr.L−1) and a high NaNO2/KOH ratio value (3) is optimum in the investigated conditions. It has the highest percentage of nitrogen-doped phases, such as N-doped γ-Al2O3 and γ-AlON (γ-Al2.78O3.65N0.35), and a homogeneous morphology of surface with the smallest average size of pores (<14 μm2). This coating showed the significantly higher corrosion resistance with a 4.101104 × 106 Ω cm2 value compared to the uncoated aluminium substrate with a corrosion resistance value of 0.094195 × 106 Ω cm2 after 48 h of immersion in the 3.5 wt% NaCl solution. The approach presented herein provides an attractive way to modify the surface of aluminium alloys to improve corrosion behaviour.  相似文献   

5.
Surface treatments are always needed to enhance corrosion-resistant performance of aluminum (Al) alloys when they are used in seawater environments. The paper aimed to prepare the composite oxide ceramic coating on Al alloy 7075 by combining micro-arc oxidation (MAO) and magnetron sputtering technology. The Al substrate was precoated with titanium (Ti) layer by using the magnetron sputtering technology and then treated by MAO in the alkaline aluminate electrolyte, resulting in a composite MAO coating, which is composed of Al2O3 and TiO2 along with the complex oxide (Al2TiO5). The potentiodynamic polarization and electrochemical impedance spectroscopy were carried out to evaluate the corrosion performance of the MAO coatings in 3.5 wt% NaCl solution. Better corrosion resistance was observed for composite oxide coating than the reference MAO coating on the bare Al, as evidenced by the higher corrosion potential of −0.664 V versus Ag/AgCl and the lower corrosion current density of 4.41 × 10-6 A/cm2.  相似文献   

6.
A silicone-epoxy hybrid coating cured with amino silane was developed to provide corrosion protection on 2024 Al-alloy using air spraying. Water uptake characteristics of the silicone-epoxy hybrid coatings were investigated by electrochemical impedance spectroscopy in a 5 wt% NaCl solution. The effect of mixture ratio of silicone-epoxy and amino-silane on the water uptake (solubility, diffusion coefficient and permeation) was studied by using a single frequency (10 kHz) capacitance method. The glass transition temperature (Tg) was also investigated through differential scanning calorimeter (DSC) before and after immersion in the NaCl solution. Consequently, the excess of silicone-epoxy resin or amino silane improved the solubility of water in the coatings. A low water permeation coefficient was obtained with the mixing ratio 8/2 of silicone-epoxy and amino-silane, in which the Tg value was found to be larger than other three mixing ratios before immersion. After immersion for 750 h, the impedance modulus of EFA 2 coating (mixing ratio 8/2) in the low frequency was still close to 108 Ω cm2 that accounts for the good protective performance.  相似文献   

7.
The two-layer and multi-layer Cr/CrxN coatings were fabricated on 316 L stainless steel (316 L SS) substrates by the arc ion plating technique. The two-layer Cr/CrxN coating was a typical CrN coating with an adhesive Cr layer. And the multi-layer Cr/CrxN coating design was in two dimensions. In the first dimension, the multi-layer Cr/CrxN coating consisted of alternative Cr/CrN layers with the thickness ratio of 1:5; in the second dimension, the alternative Cr2N layers with the thickness of 10 nm were inserted in CrN layers. This design was expected to increase transverse interfaces in a smaller scale. The microstructures, mechanical, corrosion and tribocorrosion performances of both Cr/CrxN coatings were systematically investigated. The results showed that the special multi-layer design of Cr/CrxN coatings improved mechanical, anti-corrosion and anti-tribocorrosion performances. Compared with the two-layer Cr/CrxN coating, the reduced tribocorrosion damage of the muti-layer Cr/CrxN coating was closely related to the inhibited synergistic effect between electrochemical corrosion and mechanical wear. In conclusion, the multi-layer Cr/CrxN coating was more suitable to work as the surface protective coating than the two-layer Cr/CrxN coating in seawater.  相似文献   

8.
《Ceramics International》2015,41(6):7651-7660
We describe the manufacture and electrochemical characterization of micro-tubular anode supported solid oxide fuel cells (mT-SOFC) operating at intermediate temperatures (IT) using porous gadolinium-doped ceria (GDC: Ce0.9Gd0.1O2−δ) barrier layers. Rheological studies were performed to determine the deposition conditions by dip coating of the GDC and cathode layers. Two cell configurations (anode/electrolyte/barrier layer/cathode): single-layer cathode (Ni–YSZ/YSZ/GDC/LSCF) and double-layer cathode (Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF) were fabricated (YSZ: Zr0.92Y0.16O2.08; LSCF: La0.6Sr0.4Co0.2Fe0.8O3−δ). Effect of sintering conditions and microstructure features for the GDC layer and cathode layer in cell performance was studied. Current density–voltage (j–V) curves and impedance spectroscopy measurements were performed between 650–800 °C, using wet H2 as fuel and air as oxidant. The double-cathode cells using a GDC layer sintered at 1400 °C with porosity about 50% and pores and grain sizes about 1 μm, showed the best electrochemical response, achieving maximum power densities of up to 160 mW cm−2 at 650 °C and about 700 mW cm−2 at 800 °C. In this case GDC electrical bridges between cathode and electrolyte are preserved free of insulating phases. A preliminary test under operation at 800 °C shows no degradation at least during the first 100 h. These results demonstrated that these cells could compete with standard IT-SOFC, and the presented fabrication method is applicable for industrial-scale.  相似文献   

9.
《Ceramics International》2022,48(9):12806-12812
We report the fabrication of high-performance polycrystalline indium gallium oxide (IGO) thin film transistors (TFTs) at a low temperature of 200 °C. Growth of a highly aligned cubic phase with a bixbyite structure was accelerated at a certain proportion of oxygen plasma density during deposition of the IGO thin film, which leads to outstanding electrical characteristics. The resulting polycrystalline IGO TFT exhibited a high field-effect mobility of 56.0 cm2/V, a threshold voltage (VTH) of 0.10 V, a low subthreshold gate swing of 0.10 V/decade, and a current modulation ratio of >108. Moreover, the crystalline IGO TFTs have highly stable behaviors with a small VTH shift of +0.8 and ?1.0 V against a positive bias stress (VGS,ST ?VTH = 20 V) and negative bias illumination stress (VGS,ST ?VTH = ?20 V) for 3,600 s, which is attributed to the high quality of the bixbyite crystalline structure.  相似文献   

10.
The aim of this work is to improve the electrochemical behavior of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. We grew TiN[BCN/BN]n/c-BN multilayers via reactive r.f. magnetron sputtering technique, systematically varying the length period (Λ) and the bilayer number (n), maintaining constant the total thickness of the coating and all other growth parameters. The coatings were characterized by FTIR spectroscopy that showed bands associated to h-BN bonds, and c-BN stretching vibrations centered at 1385 cm− 1 and 1005 cm− 1, respectively. Film composition was studied via X-ray photoelectron spectroscopy where typical signals for C1s, N1s and B1s are shown. The electrochemical properties were studied by electrochemical impedance spectroscopy and Tafel curves. In this work, the maximum corrosion resistance for the coating with (Λ) equal to 80 nm was obtained, corresponding to n = 25 bilayers. The polarization resistance and corrosion rate were around 10.1 kOhm cm2 and 0.22 mm/year; these values were 83 and 15 times higher, respectively, than uncoated AISI 4140 steel substrate (0.66 kOhm cm2 and 18.51 mm/year). Optical microscopy was used for surface analysis after corrosive attack. The improvement of the electrochemical behavior of the AISI 4140 coated with this TiN[BCN/BN]n/c-BN multilayer system can be attributed to the presence of several interfaces that offer resistance to diffusion of Cl of the electrolyte toward the steel surface.  相似文献   

11.
《Ceramics International》2016,42(16):18124-18127
In this work, SiO2 doped SnO2-Zn2SnO4 ceramic composites with excellent varistor and dielectric properties were prepared through traditional ceramic processing. The obtained nonlinear coefficient α was as high as 9.6, and the breakdown electrical field EB and leakage current density JL was as low as 5.9 V/mm and 62 μA/cm2, respectively. At a low frequency of 40 Hz, the relative permittivity εr measured at room temperature was higher than 2.5×104. The nonlinear decrease of the semicircle diameter in the complex impedance spectra with increasing DC bias voltage indicates that the grain boundary effect is an important origin of the varistor and giant permittivity properties. With an increase of temperature, the relaxor peak of the imaginary part M″ of the complex electric modulus shifted to high frequency and the activation energy Ea obtained from the M″ spectrum was about 0.31 eV, much lower than the grain boundary barrier height ϕb. The results suggest that other mechanisms may also be responsible for the giant permittivity property besides grain boundary barriers.  相似文献   

12.
《Ceramics International》2023,49(20):32679-32693
Plasma electrolytic oxidation (PEO) was performed on 6061 aluminum alloy in organosilicon electrolyte using a stepwise constant potential control method for 23 min. The resulting coating was a sponge-like structured amorphous silica ceramic with a thickness of about 130 μm. Its exceptional wear resistance was attributed to the high hardness of the silica ceramic and the low elastic modulus of the sponge-like structure. The corrosion resistance was enhanced by a dense layer of approximately 2 μm between the coating and the substrate. Impressively, the indentation depth of the PEO coating during nano-indentation tests was only 50–60% of that of 6061 aluminium alloy under varying loads, while the recovery depth of the PEO coating after unloading was 2.5–3.1 times greater than that of 6061 aluminium alloy. Due to its special composition and structure, the PEO coating caused serious wear to the high hardness Si3N4 friction balls during the friction and wear test. In the electrochemical tests, the coating reduced the corrosion current density from 1.056 × 10−5A·cm−2 to 1.239 × 10−7A·cm−2, while extending the passivation region from 0.322 V to 1.032 V.  相似文献   

13.
Plasma spray coating with ceramic carbide is a promising approach for improving the surface quality of the materials. In this work, the effectiveness of tungsten carbide (WC), chromium carbide (Cr3C2), and the composite coating of the two powders in the weight ratio of 50:50 were investigated. In the erosion test, aluminum oxide (Al2O3) particles were combined with a high-speed air-jet and impinged at 90° on the top surface of the material. Electrochemical polarization and electrochemical impedance spectroscopy studies were conducted with a 3.5 wt.% of sodium chloride (NaCl) solution as the electrolyte. Using a scanning electron microscope, the surface morphology of powders and coatings, as well as the mechanisms of erosion and corrosion, were studied. Energy-dispersive X-ray analysis and X-ray diffractometry were used to reveal the composition and elemental distribution of the feedstock powders and coatings. Because of the presence of hard phases, the composite coating shows the highest average microhardness of 1350.2 HV. The composite coating exhibits improved erosive wear resistance with an increase in erodent exposure time. The Cr3C2 coating has a reduced corrosion current density of 1.404 × 10−5 mA/cm2 and a higher charge transfer resistance of 2086.75 Ω cm2 due to passivation.  相似文献   

14.
An IrO2 anode catalyst was prepared by using the Adams method for the application of a solid polymer electrolyte (SPE) water electrolyzer. The effect of calcination temperature on the physical–chemical properties and the electrochemical performance of IrO2 were examined to obtain a low loading and a high catalytic activity of oxygen evolution at the electrode. The physical–chemical properties were studied via thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical activity was investigated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotentiometry in 0.1 mol L−1 H2SO4 at room temperature. The optimum condition was found to be at the calcination temperature of 500 °C, where the total polarization reached a minimum at high current densities (>200 mA cm−2). The optimized catalyst was also applied to a membrane electrode assembly (MEA) and stationary current–potential relationships were investigated. With an optimized catalytic IrO2 loading of 1.5 mg cm−2 and a 40% Pt/C loading of 0.5 mg cm−2, the terminal applied potential difference was 1.72 V at 2 A cm−2 and 80 °C in a SPE water electrolysis cell.  相似文献   

15.
Iron flow batteries are having tremendous attraction because of their economic feasibility and environmentally favorable electrolytes. Electrode and electrolyte used in iron-based redox flow batteries (IRFBs) have a vital role in the performances of electrochemical energy storage devices. Therefore designing a suitable electrode and optimization of electrolyte composition is highly needed. Graphite is one of the appropriate electrodes used in flow batteries but they have to be modified to improve the electrical performance. Here, for the first time, WO3 nanoparticles (WONs) were used to modify graphite felt electrode for IRFBs applications. The effect of loading mass per unit cm2 of electrochemically active material has been investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (Tafel) studies. The ligand based iron-electrolyte along with anion exchange membrane has been selected for the studies. The performance of the modified graphite felt electrode (3 mg/cm2) assembled in 132 cm2 cell results in a peak power density of 53 mW/cm2 at 40 mA/cm2. This study provides information about the improvement in the electrochemical performance of IRFBs.  相似文献   

16.
The electron field emission (EFE) properties of Si-nanowires (SiNW) were improved by coating a UNCD films on the SiNWs. The SiNWs were synthesized by an electroless metal deposition (EMD) process, whereas the UNCD films were deposited directly on bare SiNW templates using Ar-plasma based microwave plasma enhanced chemical vapor deposition (MPE–CVD) process. The electron field emission properties of thus made nano-emitters increase with MPE–CVD time interval for coating the UNCD films, attaining small turn-on field (E0 = 6.4 V/μm) and large emission current density (Je = 6.0 mA/cm2 at 12.6 V/μm). This is presumably owing to the higher UNCD granulation density and better UNCD-to-Si electrical contact on SiNWs. The electron field emission behavior of these UNCD nanowires emitters is significantly better than the bare SiNW ((E0)SiNWs = 8.6 V/μm and (Je)SiNWs < 0.01 mA/cm2 at the same applied field) and is comparable to those for carbon nanotubes.  相似文献   

17.
A miniature impedance sensor used for field diagnosis of the early failure of coatings has been developed based on microelectronics and electrochemical impedance spectroscopy (EIS). The aging process of polyurethane-based coatings in salt spray test chamber was studied using the impedance sensor. Several critical indexes related to EIS such as phase angle (θ10Hz, θ15kHz), breakpoint frequency (fb), specific capacitance (C10Hz, C15kHz), and impedance modulus (Z0.1Hz) were proposed to evaluate the severity of coating degradation. The results indicated that the impedance sensor could accurately monitor the degradation process of coatings, and once Z0.1Hz?<?106 Ω cm2, fb?>?100 Hz, or θ10Hz?<?20°, the coating may be regarded as completely degraded and fails to protect the metal substrate.  相似文献   

18.
Surface modification is an effective method for improving the high-voltage cycling stability of LiCoO2. In this work, lithium carbonate (Li2CO3), the main component of solid electrolyte interphase (SEI) films, is selected as the coating material to modify LiCoO2 composite electrodes by a wet chemical method, and the effect of the Li2CO3 coating time on the electrochemical performance of the LiCoO2 electrode is investigated. Results show that the Li2CO3 coating significantly improves the cycling performances and initial coulombic efficiencies of the LiCoO2 electrodes in the potential range of 3.0–4.5 V. The electrode with a coating time of 2 min exhibits the best electrochemical performance, in which the capacity retention rate is 90.9% after 100 cycles at 0.2C while the initial coulombic efficiency is 90.04%, whereas the capacity retention rate and initial coulombic efficiency of the uncoated electrode are only 73.11% and 74.66%, respectively. The capacity of the electrode with the 2-min coating reaches 134.3 mA h g?1 after 500 cycles, while that of the uncoated electrode is only 37.7 mA h g?1 under the same conditions. The results of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray diffraction, and scanning electron microscopy show that the Li2CO3 coating stabilizes the electrode surface and structure to effectively inhibit the increase in electrode polarization.  相似文献   

19.
The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (Rp) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (Rpore), the charge transfer resistance (Rct), the coating capacitance (Qcoat) and the double layer capacitance (Qdl) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher Rpore and Rct values as compared to the single layer coatings. Similarly, the Qcoat and Qdl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under scanning electron microscopy.  相似文献   

20.
CrN/Cr-coated stainless steel (STS) 316L is investigated as the material for a metal bipolar plate for a direct methanol fuel cell (DMFC) under actual operating circumstances. Protective coating layers of CrN/Cr are formed on STS 316L using an unbalanced magnetron (UBM) DC sputter via Cr target in an effort to improve the corrosion resistance and long-term stability of the STS 316L. In a corrosion resistance test, the CrN/Cr-coated STS 316L shows much better corrosion resistance than bare STS 316L in simulated electrolytic environments under anodic and cathodic potentials relevant to DMFCs. The interfacial contact resistance (ICR) between CrN/Cr-coated 316L and carbon paper decrease to 4 mΩ cm2 at a compaction force of 150 N cm−2 compared to bare STS 316L (570 mΩ cm2). The CrN/Cr-coated STS 316L cell has better cell performance compared to the bare STS 316L cell. Furthermore, the CrN/Cr-coated STS 316L cell exhibit low voltage losses of 38.2 μV h−1 under long-term operation of 760 h. These results show that the CrN/Cr-coated STS 316L, demonstrating its feasibility for use as a metal bipolar plate in a DMFC under actual operating circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号