首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   

2.
《Ceramics International》2023,49(12):20071-20079
In this work, hybrid nanocomposite materials for the wastewater treatment via photocatalysis have been developed by combining multi walled carbon nanotubes (MWCNT) and hematite (α-Fe2O3).A straightforward strategy via sonication method has been used to prepare theα-Fe2O3/CNT nanocomposites with varying CNT content (5%, 7.5%, and 10%)and characterized by X-ray Diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and UV–Vis. spectrophotometer. XPS spectra was used to identify the defects/oxygen vacancies in the α-Fe2O3 lattice. TEM revealed the well deposition of α-Fe2O3 nanoparticles on the CNT surface. α-Fe2O3/CNT 10% nanocomposites have higher photocatalytic activity with 87% degradation of Rose Bengal dye in 90 min. The increased photocatalytic activity can be attributed to the synergistic contribution of α-Fe2O3 and CNTs, which inhibits photo-generated charge carrier recombination and the formation of highly active radical species (OH radicals, and O2 radicals) on the surface of CNTs. This research may be useful not only for understanding the photocatalytic mechanism, but also for developing efficient photocatalysts for the organic pollutant degradation.  相似文献   

3.
SrTiO3-graphene nanocomposites were prepared via photocatalytic reduction of graphene oxide by UV light-irradiated SrTiO3 nanoparticles. Fourier transformed infrared spectroscopy analysis indicates that graphene oxide is reduced into graphene. Transmission electron microscope observation shows that SrTiO3 nanoparticles are well assembled onto graphene sheets. The photocatalytic activity of as-prepared SrTiO3-graphene composites was evaluated by the degradation of acid orange 7 (AO7) under a 254-nm UV irradiation, revealing that the composites exhibit significantly enhanced photocatalytic activity compared to the bare SrTiO3 nanoparticles. This can be explained by the fact that photogenerated electrons are captured by graphene, leading to an increased separation and availability of electrons and holes for the photocatalytic reaction. Hydroxyl (·OH) radicals were detected by the photoluminescence technique using terephthalic acid as a probe molecule and were found to be produced over the irradiated SrTiO3 nanoparticles and SrTiO3-graphene composites; especially, an enhanced yield is observed for the latter. The influence of ethanol, KI, and N2 on the photocatalytic efficiency was also investigated. Based on the experimental results, ·OH, h+, and H2O2 are suggested to be the main active species in the photocatalytic degradation of AO7 by SrTiO3-graphene composites.

PACS

61.46. + w; 78.67.Bf; 78.66.Sq  相似文献   

4.
《Ceramics International》2022,48(21):31818-31826
SbSI nanowires (SbSI NWs) and SbSI microrods (SbSI MRs) were synthesized by simple sonochemical and hydrothermal methods, respectively. The SbSI NWs possess better catalytic performance due to the smaller size and larger specific surface area. Meanwhile, the piezoelectric effect and photocatalytic performance of SbSI were combined for the first time. The degradation rate of methyl orange (MO) solution (30 mg/L) by SbSI NWs reaches 97.1% within 2 min under the synergistic effect of visible light and ultrasonic vibration, which is 4.83 times of photocatalysis and 14.22 times of piezocatalysis. The reactive oxide species (ROS) such as hydroxyl radicals (?OH) and superoxide radicals (?O2?) were examined by radical trapping experiments to demonstrate their critical role in degrading MO molecule. Furthermore, a possible mechanism of the piezo-photocatalytic process was proposed and degradation pathway of MO dyes by SbSI NWs was suggested based on the HPLC-MS results. It shows that the degradation process of MO includes the breakage of azo double bond, the removal of sulfonic group, the breakage of carbon nitrogen bond, and finally the formation of NO3?, SO42?, CO2 and H2O. This work provides a promising case for the practical application in dye wastewater treatment of piezoelectric semiconductors.  相似文献   

5.
A new catalyst based on biosilica doped with palladium(II) chloride nanoparticles was prepared and tested for efficient degradation of methyl orange (MO) in water solution under UV light excitation. The obtained photocatalyst was characterized by X-ray diffraction, TEM and N2 adsorption/desorption isotherms. The photocatalytic degradation process was studied as a function of pH of the solution, temperature, UV irradiation time, and MO initial concentration. The possibilities of recycling and durability of the prepared photocatalysts were also tested. Products of photocatalytic degradation were identified by liquid chromatography–mass spectrometry analyses. The photocatalyst exhibited excellent photodegradation activity toward MO degradation under UV light irradiation. Rapid photocatalytic degradation was found to take place within one minute with an efficiency of 85% reaching over 98% after 75 min. The proposed mechanism of photodegradation is based on the assumption that both HO and O2•− radicals, as strongly oxidizing species that can participate in the dye degradation reaction, are generated by the attacks of photons emitted from diatom biosilica (photonic scattering effect) under the influence of UV light excitation. The degradation efficiency significantly increases as the intensity of photons emitted from biosilica is enhanced by palladium(II) chloride nanoparticles immobilized on biosilica (synergetic photonic scattering effect).  相似文献   

6.
Solar-driven highly efficient photocatalytic decomposition of toxic organic contaminants using magnetically separable α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanodiscs is reported. α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures were synthesized by microwave-assisted co-precipitation and simple co-precipitation methods and well characterized by XRD, micro-Raman, FESEM and UV–vis spectroscopy. FESEM micrographs revealed nanodiscs in case of microwave-assisted co-precipitation whereas nanoparticles and their aggregates were formed under co-precipitation combined with calcination. XRD and Raman studies confirmed the hybrid nature of prepared α-Fe2O3/ZnFe2O4/ZnO nanostructures. Photocatalytic performance of α-Fe2O3/ZnFe2O4/ZnO hybrid nanostructures was investigated by carrying out the photodegradation of organic dyes MB and MG under solar light illumination. The prepared α-Fe2O3/ZnFe2O4/ZnO ternary hybrid magnetic nanodiscs decomposed MB and MG dyes in only 32 and 24 min, respectively. α-Fe2O3/ZnFe2O4/ZnO hybrid nanodiscs showed excellent photocatalytic performance together with reusability and easy magnetic separation demonstrating its suitability for solar-driven photocatalytic water purification applications. In-situ scavenger studies showed ?OH radicals are the main active radicals in solar-driven photocatalysis by α-Fe2O3/ZnFe2O4/ZnO nanodiscs. The tentative mechanism of growth of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanodiscs and the photocatalytic mechanism are discussed.  相似文献   

7.
《Ceramics International》2023,49(12):20104-20117
In this study, a multifunctional textile profiting from photocatalytic activity, magnetic, and antibacterial properties was generated through decorating polyester fabric with cobalt ferrite (CoFe2O4) nanoparticles using the co-precipitation technique. The X-ray diffraction (XRD) results supported the successful decoration of fabrics with CoFe2O4 magnetic nanoparticles. Field emission electron scanning microscopy (FESEM) images accompanied by energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses demonstrated the morphology, dispersion, and chemical structure of particles on the surface. The mean particle size of cobalt ferrite was measured to be approximately 40 nm. Vibrating sample magnetometer (VSM) results confirmed the ferrimagnetic behavior of the decorated fabrics with saturation magnetization (Ms) and coercivity (Hc) of 1.8 emu/g and 1902 Oe, respectively. The UV–vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) data indicated the appropriate performance under visible light irradiation and postponed electron-hole recombination of the decorated fabric, respectively. The maximum MB degradation efficiency of 97% after 180 min of visible light illumination was obtained. The active species trapping analyses indicated that hydroxyl radicals (OH) were the effective species in the photocatalytic degradation mechanism. The decorated sample with the best photocatalytic activity revealed more than 99% reduction in the number of colonies against gram-negative and gram-positive bacteria after 24 h contact time, which validated its excellent potential for antibacterial applications. Outstanding photocatalytic and antibacterial characteristics of the decorated textile with cobalt ferrite nanoparticles turn it into promising composite material for self-cleaning purposes.  相似文献   

8.
《Ceramics International》2022,48(10):13572-13579
NiFe2O4/CdO nanocomposites were prepared using a facile co-precipitation method. A series of characterization techniques such as X-rays diffraction, Fourier transform infrared spectroscopy, and UV–Visible absorbance spectroscopy were performed to validate that weight percentage of CdO can efficiently manage the textural characterization, crystal size, and other parameters meant for photocatalysis. Experimental findings have shown that the weight percentage of CdO has an influential effect on the photocatalytic degradation of methylene blue (MB) under solar irradiation. Compared with bare NiFe2O4, all NiFe2O4/CdO composites have shown better photocatalytic activity. Among all composites, NiFe2O4/CdO composite with 15% CdO has displayed the best photocatalytic efficiency (72%) for MB degradation. The enhanced photocatalytic activity may be ascribed to the delayed electron-hole recombination and availability of active sites for degradation. Furthermore, NiFe2O4/CdO composite could quickly be recovered from the solution using a magnet. Intermediate species trapping experiments have shown that photocatalysis by NiFe2O4/CdO is highly dependent on superoxide radicals.  相似文献   

9.
《Ceramics International》2020,46(9):13466-13473
Round shaped Mn-modified HfO2 nanoparticles were prepared by the Pechini type sol-gel method. The effects of Mn ions on the structure, particle growth, composition, optical properties and photocatalytic performance of HfO2 particles were investigated. The structure analysis revealed that the insertion of Mn2+, Mn3+, and Mn4+ ions inhibited the complete stabilization of tetragonal HfO2. Also, the decrease of particle size to values lower than 5 nm and the shift of optical band gap from 5.7 to 2.1 eV was obtained as effect of increasing the Mn content. HfO2 nanoparticles modified with 10 w% Mn exhibited the highest photocatalytic performance, reaching an efficiency of 91.93% in the decomposition of methylene blue, after 120 min of sunlight irradiation. The efficient trapping of photogenerated electrons on the surface of these nanoparticles generated •O2 radicals, which were the main oxidative species involved in the degradation of the dye. The improved photocatalytic performance of these nanoparticles is then attributable to their increased surface area, suitable photoactivation, and effective transport of photoexcited charge carriers. Based in studies of band gap, valence band position and active species, a mechanism of photodegradation for this photocatalyst was also proposed and discussed.  相似文献   

10.
《Ceramics International》2022,48(5):6078-6086
Developing interfacial connections is one of the breakthrough strategies to improve the photocatalytic activity of graphene/p-n heterojunction systems. Herein, natural tragacanth mucilage, for the first time, was employed as cost-effective and ecofriendly surfactant to prepare highly efficient ZnO–ZnBi2O4/graphene hybrid photocatalyst. The results indicated that the methylene blue (MB) photocatalytic degradation efficiency of ZnO–ZnBi2O4/graphene-mucilage heterojunction, containing 10 wt% ZnBi2O4 and 1 wt% graphene, was ~1.2, 1.4, 3.1 and 8.3 times higher than that of ZnO–ZnBi2O4/graphene, ZnO–ZnBi2O4, ZnBi2O4 and ZnO samples, respectively. This significant improvement in the photocatalytic performance could be mainly ascribed to the desirable advantages of using natural mucilage as surfactant, including uniform distribution of ZnO–ZnBi2O4 nanoparticles on the surface of graphene sheets, increasing of the effective surface area, and improving of the charge carriers separation. Based on the trapping experiments, electron spin resonance and photoelectrochemical Mott-Schottky tests, direct Z-Scheme charge transfer mechanism with hydroxyl radicals as main active species was suggested for photocatalytic degradation of MB on the ZnO–ZnBi2O4/graphene-mucilage nanocomposite. This study provides a new insight to fabricate more homogeneous and close contact interfaces in graphene-based hybrid photocatalytic systems for environmental remediation.  相似文献   

11.
Atenolol (ATL) was removed with a rectangular staircase photocatalytic reactor (RSPR) using immobilized ZnO under solar irradiation. The effects of operational parameters such as flow rate, pH, and initial ATL concentration were examined. The highest degradation was obtained after 240 min photocatalytic reaction. The effects of different scavengers proved that the ATL degradation was mainly due to the direct oxidization with OH? radicals, whereas, the h+ and O2?? radicals played a minor role in the degradation process. Five repetitive operations of RSPR allowed for reaching 77 ± 3 % degradation of ATL for each cycle. Kinetic data indicated that the photocatalytic kinetics followed the global matter balance model.  相似文献   

12.
《Ceramics International》2020,46(9):13517-13526
In this study, a magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO (x, y = 0.05) (NCCF-rGO) nanocomposite photocatalyst has been prepared by following a facile in-situ co-precipitation method combined with ultra-sonication means. The as-synthesized magnetically separable NCCF-rGO nanocomposite photocatalyst efficiently degrades methylene blue (MB) dye in comparison to bare Ni1-xCdxCeyFe2-yO4 (x, y = 0.05) (NCCF) nanoparticles (NPs) under visible light irradiation. The photo-degradation rate of MB with NCCF-rGO was ~9 times higher than NCCF nanoparticles (NPs). This enhanced photocatalytic performance of NCCF-rGO photocatalyst was due to the presence of reduced graphene oxide, which greatly help in production of photoactive species by reducing the rate of electro-hole pair recombination. The role of photoactive species that were responsible for the photocatalytic degradation of methylene blue has also been investigated. The as-synthesized NCCF-rGO photocatalyst expressed superb chemical stability and photocatalytic activity even after seven cycle runs. Moreover, the NCCF-rGO nanocomposite worked at all pH values and showed good acid resistance. In particular, the as-synthesized NCCF-rGO photocatalyst could be collected for the next cycle run by simply applying an external magnetic field. Hence, the NCCF-rGO nanocomposite could have potential use in organic dyes contained wastewater treatment.  相似文献   

13.
TiO2 porous ceramic/Ag–AgCl composite was prepared by incorporating AgCl nanoparticles within the bulk of TiO2 porous ceramic followed by reducing Ag+ in the AgCl particles to Ag0 species under visible light irradiation. The porous TiO2 ceramic was physically robust and chemically durable, and the porous structure facilitated the implantation of AgCl NPs. Compared with the bare TiO2 ceramic, TiO2 porous ceramic/Ag–AgCl composite exhibited higher photocatalytic performance for the degradation of MO and RhB under visible light irradiation. The reaction rate constants k of MO and RhB degradation over TiO2 porous ceramic/Ag–AgCl composite was respectively 6.25 times and 3.62 times higher than those recorded over the bare TiO2 porous ceramic. The photocatalytic activity showed virtually no decline after four times cyclic experiments under visible light irradiation. Scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectra and X-ray photoelectron spectroscopy were used to characterize the TiO2 porous ceramic/Ag–AgCl composite.  相似文献   

14.
《Ceramics International》2020,46(8):11593-11601
Transition-metal carbides, nitrides or carbonitrides (named as MXenes) are a novel type of two-dimensional (2D) materials with the features of traditional 2D materials but more variable chemical compositions. MXenes and related materials have raised more and more research attention and been extensively explored for different applications. In this work, we developed a novel method to synthesize magnetic MXene composites (Ti3C2-MNPs) for the first time through a one-pot route, which relied on the incorporation of Fe3O4 nanoparticles into Ti3C2 nanosheets via thermal treatment. The potential utilization of these Ti3C2-MNPs for catalytic degradation of organic dyes through advanced oxidation processes (AOPs) were also evaluated in details. We demonstrated that Fe3O4 nanoparticles with size about 5 nm could be anchored onto Ti3C2 with well dispersed state. The catalytic degradation results demonstrated that Ti3C2-MNPs possess extremely high degradation efficiency towards different organic dyes under optimal conditions. The electron spin resonance (ESR) spectra identified that both hydroperoxyl radicals (•OH) and superoxide radicals (•O2-) radicals were involved in the degradation process. This work reported a novel one-step method for fabrication MXenes based multifunctional composites, which show extremely high efficiency for AOPs. This method could also be extended for fabrication of many other multifunctional composites for various applications.  相似文献   

15.
Heterogeneous catalysts with low cost, environmentally friendly, highly effective and ready separation from aqueous solution are highly desirable. Magnetic CuO-Fe3O4 nanoparticles, a type of non-toxic bimetallic transition metal oxide, is a promising heterogeneous catalyst for activation of peroxymonosulfate (PMS) to generate reactive oxygen species (ROS) that has not been previously investigated. In this study, the activation of PMS by CuO-Fe3O4 nanoparticles was evaluated using the degradation of 4-chlorophenol as a model reaction. Several critical factors such as pH, catalyst dosage and PMS concentration were investigated. CuO-Fe3O4/PMS system demonstrated a wide effective pH range to degrade 4-chlorophenol, namely 5.5 to 9.5. With the increase of the catalyst dosage, the degradation efficiency of 4-chlorophenol appeared to increase first and then decrease, that the inflection point was 0.5 g/L. Elevated PMS concentration obviously improved the decomposition of 4-chlorophenol; however, the plateau was reached when the PMS concentration was 8 mM. Further increase in PMS concentration would not significantly improve the removal efficiency. Through examining the effects of scavengers and electron spin resonance (ESR) analyses, CuO-Fe3O4 nanoparticles were proven to activate PMS through a non-radical and radical pathway to generate singlet oxygen, sulfate radicals and hydroxyl radicals. Based on results, CuO-Fe3O4 nanoparticles were effective, environmentally friendly and low cost catalysts for efficient activation of PMS. These features make CuO-Fe3O4 nanoparticles a readily available heterogeneous catalyst to activate PMS for refractory organic pollutants degradation in advanced oxidation processes (AOPs).  相似文献   

16.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   

17.
Flower-like Bi2O3/Bi2MoO6 heterostructured microspheres with excellent photocatalytic performance were successfully constructed by in situ ion exchange and calcination, employing Bi2MoO6 microspheres prepared by solvothermal method as raw material and template. Various characterization techniques including XRD, FE-SEM, EDS, UV–vis DRS and XPS have been adopted to analyze the composition, structure and optical absorption property of the obtained sample. Their photocatalytic properties for degrading acid orange 7 (AO7) were investigated with visible light. Experimental results show that all Bi2O3/Bi2MoO6 composites have a higher catalytic activities than pure Bi2MoO6. Remarkably, 0.2Bi2O3/Bi2MoO6 show best activity and the degradation efficiency is up to 99% under visible light for 100?min, which is ascribed to the synergistic effect and big heterojunction interface, and promoting rapid transmission of photogenerated charge. Moreover, There is negligible reduction on the degradation efficiency after catalysts was reused for 4 times. The photogenerated holes (h+) and superoxide radical anions (?O2-) were major active species by radical scavenger experiments. A possible mechanism is proposed to explain rationally enhancement of photocatalytic activity.  相似文献   

18.
《Ceramics International》2020,46(15):24060-24070
Taking advantage of the oil-water interface, we introduced Ag@AgCl quantum dots (QDs) onto 2D Sn3O4 nanosheets to fabricate a composite photocatalyst with a 3D flower-like structure (denoted as Ag@AgCl/Sn3O4). Using the degradation of tetracycline hydrochloride (TC-HCl) and methylene blue (MB) as the examples, the as-prepared Ag@AgCl/Sn3O4 composite with Ag@AgCl weight loading of 1% indicated 9.6 and 7.88 times higher photocatalytic activity than the Sn3O4 nanosheets. Within both degradation reactions, hydroxyl radicals (•OH) and superoxide radicals (•O2−) were identified as the critical oxidation intermediates based on radical trapping and electron spin resonance (ESR) experiments. The unique morphology and photoelectrochemical properties of the as-prepared composites suggested the introduced Ag@AgCl QDs cooperated with the Sn3O4 semiconductor to enhance the utilization of solar energy. Overall, the established heterojunction helped to reduce the transfer barrier of the photoinduced charge carriers, wherein the surface plasmonic resonance (SPR) of Ag nanoparticles was believed to take the main responsibility. The present work combines the Ag@AgCl-QDs and flower-like 3D Sn3O4 microspheres for the first time to achieve an impressive degrading rate of TC-HCl and MB at the Ag@AgCl weight loading as low as 1%.  相似文献   

19.
《Ceramics International》2022,48(7):9746-9752
In this work, the photocatalytic degradation of malachite green (MG) solutions by β-Ga2O3 was investigated. The latter was synthetized by reacting gallium nitrate with concentrated formic acid, which produced gallium formate. The thermal decomposition of this compound at 850 °C produced single-phase β-Ga2O3. The resulting morphology corresponds to non-agglomerated microcubes, with a size in the range of 0.8 and 2.3 μm. The surface chemical composition and bandgap energy of this oxide were determined by X-ray photoelectron spectroscopy (XPS) and the Tauc method, respectively. The photodegradation of MG was carried out under violet light (λ = 405 nm), at room temperature, using the as-prepared powder. The results revealed a fast degradation of the dye during the first 20 min, which attenuates over time. The rate of photodegradation depends on the amount of β-Ga2O3 used and can be fitted by an exponential equation. The role of free hydroxyl radicals and reactive oxygen species in photocatalysis was addressed by using analytic techniques (FTIR and XPS).  相似文献   

20.
《Ceramics International》2020,46(1):460-467
A novel Bi3O4Cl/SrFe12O19 magnetic photocatalyst has been fabricated by a hydrothermal-roasting method. Its structure and performance were studied through XRD, XPS, SEM, UV–vis DRS, PL, EIS and VSM, and the photocatalytic property was tested by photodegradation of RhB irradiation with solar-simulated light. The optimum sample of Bi3O4Cl/SrFe12O19(20%) displayed the excellent photocatalytic activity, and the degradation rate was more than 99.7% in 80 min. In addition, the Bi3O4Cl/SrFe12O19(20%) showed the quite high magnetic performance, of which the saturation magnetization was 7.65 emu·g−1 and the recovery percent was 92.4%. Meantime, the product revealed the great photocatalytic stability, with the photodegradation leave reaching 84.1% after five cycles. The trapping experiments demonstrated that the hydroxyl radicals, photoproduction holes and superoxide radicals played a critical part in photodegrading of RhB. This research provided a new method to synthesize composite magnetic photocatalyst and studied the possible photodegradation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号