首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
萃取精馏分离异丙醇-水共沸体系的模拟与优化   总被引:3,自引:0,他引:3  
朱登磊  任根宽  谭超 《化学工程师》2009,23(10):13-16,22
对异丙醇-水共沸体系的萃取精馏过程进行模拟与优化。以乙二醇为萃取剂,基于UNIFAC模型,使用Aspen Plus化工模拟软件中的RadFrac模块进行萃取精馏模拟,并利用灵敏度分析模块对各工艺参数进行灵敏度分析与优化。结果表明,以乙二醇做萃取剂分离异丙醇-水共沸体系是可行的。对于处理流量5000kg·h-1的异丙醇-水共沸溶液,精馏塔具有22块塔板时,原料进料位置在第16块塔板,萃取液进料位置在第3块塔板,摩尔回流比为1.4,萃取剂与原料的进料比为2∶1,塔顶异丙醇质量分数可达0.9981,萃取精馏塔的分离效果和热负荷达到最优。模拟和优化的结果对工业化设计和生产具备指导意义。  相似文献   

2.
萃取精馏制取无水乙醇的过程优化研究   总被引:1,自引:0,他引:1  
对萃取精馏制取无水乙醇进行优化研究.以工业乙醇为原料,乙二醇为萃取剂,基于UNIFAC活度系数模型,使用Aspen Plus化工模拟软件对无水乙醇生产过程中各参数对分离效果的影响进行模拟计算和优化.结果表明,当原料工业乙醇流量为10000 kg·h-1,萃取精馏塔具有28块塔板,溶剂回收塔具有10块塔板时,优化的操作参数为:萃取精馏塔原料进料位置为第18块塔板,萃取剂的进料位置为第3块塔板,回流比为2.4,萃取剂与原料进料比(质量)为1∶1,溶剂回收塔进料位置为第4块塔板,回流比为1.2.在优化参数条件下,产品无水乙醇的质量分数可达99.96%,萃取精馏塔再沸器的热负荷为7242.55 kW,溶剂回收塔再沸器的热负荷为977.71 kW.优化的结果对工业生产具备指导意义.  相似文献   

3.
在常规的间歇萃取精馏实验装置中,研究了以N,N-二甲基酰胺(DMF)和二甲亚砜(DMSO)作萃取剂;在间歇萃取精馏塔中分离乙醇-乙酸乙酯体系的过程。对全回流时间、不同萃取剂、恒沸物组成、溶剂和混合物的体积比、加盐及加碱等因素考察,分析萃取精馏分离乙醇-乙酸乙酯共沸体系的影响,从而得出最佳的萃取条件。  相似文献   

4.
使用Aspen Plus软件,选择NRTL物性分析方法,分别以乙二醇、甘油作为萃取精馏的萃取剂,对含异丁醇和乙醇的有机废水体系建立了分离工艺模型。从分离效果、工艺操作条件和运行费用等方面比较了两种萃取剂优劣,并利用灵敏度分析工具对精馏塔的塔板数、回流比、原料以及萃取剂进料位置等工艺参数进行优化。结果表明:相比于乙二醇作为的萃取剂,使用甘油作为萃取剂,异丁醇-乙醇-水体系的分离效果更好,工艺操作条件更简单,设备和运行费用更低,因此确定了以甘油为萃取剂进行萃取精馏的分离方法。  相似文献   

5.
利用化工流程模拟软件Aspen Plus V8.6,以N, N-二甲基乙酰胺为萃取剂对环己烯-环己烷体系进行萃取精馏模拟及优化。通过灵敏度分析工具确定了环己烯萃取精馏塔的最佳工艺操作参数为:全塔采用74块理论板数,萃取剂进料位置在17块理论板,原料进料位置在第40块理论板,回流比为12.8,溶剂比为7.6,此时环己烯分离塔顶环己烯质量分数≤1.5%,萃取剂N, N-二甲基乙酰胺质量分数≤0.002 1%,塔釜环己烯回收率≥99.7%,满足工艺分离要求。对现有生产工艺进行了优化,优化后系统能耗降低了约9.6%。  相似文献   

6.
朱登磊  尚书勇  任根宽 《现代化工》2014,34(11):120-124
针对生物燃料乙醇生产中的"蒸馏-脱水"过程,建立基于分壁式萃取精馏塔的三塔工艺和两塔工艺,对2种工艺进行模拟计算,比较其分离效果和过程能耗。结果显示,在满足产品质量的前提下,三塔工艺比两塔工艺节约66.6%的冷凝器热负荷和77.9%的再沸器热负荷。对三塔工艺的分壁式萃取精馏塔的工艺条件进行优化,优化结果为,主塔回流比1.5,溶剂比1.0,原料进料位置为第22块板,隔板底端位置在第28块板,气相分配比为8.4。在优化工艺条件下对三塔工艺进行全流程模拟,可得到质量分数99.96%生物燃料乙醇和99.49%的水,回收萃取剂乙二醇质量分数为99.97%。  相似文献   

7.
对异丙醇装置副产二异丙醚的分离提纯工艺进行模拟与优化,以水作为萃取剂,基于NRTL模型,使用Aspenplus化工模拟软件的Extract和Radfrac模块进行萃取和精馏模拟,并利用灵敏度分析工具对精馏塔工艺参数进行优化。结果表明,以水做萃取剂再经过精馏工艺提纯二异丙醚是可行的。优化得到最佳工艺参数为精馏塔为30块塔板,原料进料位置在第11块。质量回流比为1.5,精馏塔底二异丙醚纯度可达99.99%,模拟和优化结果对工业化设计和生产具有重要的指导意义。  相似文献   

8.
本文以压敏性共沸物乙醇-苯的分离为例,基于标准挥发度曲线随压力的变化趋势,探究了萃取精馏塔塔压对工艺经济性的影响。通过分析萃取剂对乙醇-苯体系相对挥发度的影响,确定出不同类型的萃取剂1,2-丙二醇和对二甲苯。研究发现不同类型萃取剂下标准挥发度曲线随压力改变有不同的变化趋势。为找出标准挥发度曲线变化趋势与工艺经济性的关系,以最小年度总费用(TAC)为目标函数,对包括萃取精馏塔塔压在内的工艺参数进行优化。研究发现,当1,2-丙二醇为萃取剂时,TAC随压力的降低呈下降趋势,而当对二甲苯为萃取剂时,TAC随压力的升高呈下降趋势。常压下以1,2-丙二醇为萃取剂工艺的经济性优于以对二甲苯为萃取剂的经济性,TAC减少了7.42%。优化压力后,以对二甲苯为萃取剂工艺的TAC反而更小,TAC减少了9.17%。压力的改变导致了萃取剂的选择发生了改变,这为萃取剂的选择提供了新的思路。本文的研究结果表明在减少萃取剂用量、降低TAC、以及选择萃取剂方面,萃取精馏塔塔压有着重要的影响。  相似文献   

9.
通过气液相平衡实验,确定了萃取精馏分离邻二甲苯-苯乙烯物系的单一萃取剂(环丁砜)和混合溶剂(环丁砜和N-甲基吡咯烷酮)及其适宜的质量配比.在此基础上,用Aspen plus流程模拟软件,对萃取精馏过程进行模拟分析,考察了溶剂比、回流比、理论板数对分离效果的影响,得到了萃取精馏塔适宜的操作工艺条件,为工艺设计开发提供了基础数据.  相似文献   

10.
应用化工过程模拟软件Aspen Plus V7.3对甲醇-四氢呋喃最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、原料进料位置、萃取剂进料位置、回流比、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为32,原料和萃取剂分别在第26块和第4块理论板进料,回流比为3,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶四氢呋喃的分离效果达99.98%,萃取剂回收塔塔顶甲醇的纯度达到99.96%;萃取剂二甲基亚砜的循环补充量为8.58 mol/h。模拟与优化结果为甲醇-四氢呋喃共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

11.
利用Aspen Plus化工流程模拟软件采用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对乙酸乙酯和异丙醇共沸体系的分离进行了模拟和优化。确定最优工艺参数为:萃取精馏塔理论板数43,混合物进料位置28,萃取剂进料位置4,回流比2.3,溶剂比4;溶剂回收塔理论板14,进料位置8,回流比1。萃取精馏塔塔顶乙酸乙酯含量99.80%,溶剂回收塔塔顶异丙醇含量99.40%。对工业化分离过程优化操作及设计具有指导意义。  相似文献   

12.
通过Aspen Plus化工流程模拟软件,利用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对甲醇-乙酸乙酯共沸物进行了分离模拟研究。确定最优工艺参数为:萃取精馏塔理论板数41,混合物进料位置25,萃取剂进料位置4,回流比2.1,溶剂比3.8;溶剂回收塔理论板数12,进料位置7,回流比0.7。萃取精馏塔塔顶乙酸乙酯质量分数达99.80%,溶剂回收塔塔顶甲醇质量分数达99.74%。对分离过程优化操作及设计提供了理论依据。  相似文献   

13.
应用化工过程模拟软件Aspen Plus对丙酮-氯仿最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、回流比、原料进料位置、萃取剂进料位置、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为45,原料和萃取剂分别在第11块和第3块理论板进料,回流比为2.5,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶丙酮的分离效果达99.95%,萃取剂回收塔塔顶氯仿的纯度达到98.34%;萃取剂二甲基亚砜的循环补充量为5.557mol/h。模拟与优化结果为丙酮-氯仿共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

14.
黄丽红  韩淑萃 《广东化工》2012,39(11):64-65,63
利用Aspen Plus化工流程模拟软件,通过萃取精馏技术以N-甲基吡咯烷酮(NMP)为萃取剂,对制药过程产生的乙酸乙酯和正己烷混合液进行了模拟研究,分析了萃取精馏塔理论板数、进料位置、回流比及溶剂比对分离效果的影响,确定最佳工艺方案,为分离过程的优化操作和设计提供依据。  相似文献   

15.
李雪梅  李春喜 《现代化工》2012,32(6):100-103
利用Aspen Plus模拟软件,模拟研究了由乙醇质量分数为95%的工业酒精通过常压萃取精馏制取无水乙醇的工艺过程,并对单(2-羟乙基)铵甲酸盐离子液体和乙二醇传统萃取剂的分离性能进行了比较分析。考察了原料和萃取剂的进料位置、萃取剂用量、回流比等参数对分离效果的影响,获得了优化的操作条件,即精馏塔塔板数28,原料进料板为第17块,萃取剂进料板为第2块,溶剂比为0.6,摩尔回流比为1.6。在优化操作条件下,塔顶产品中乙醇的质量分数可达99.98%,与乙二醇为萃取剂的传统萃取精馏过程相比,再沸器热负荷降低28%,具有明显的节能效果。  相似文献   

16.
介绍酯交换法生产聚碳酸酯工艺中的副产品,甲醇和碳酸二甲酯共沸物的分离。以萃取精馏工艺,选用苯酚为萃取剂,利用萃取精馏塔和萃取剂再生塔精馏回收,分离甲醇和碳酸二甲酯共沸物。采用Aspen Plus软件中的设计规定和灵敏度分析工具对分离流程进行模拟设计和优化。从结果分析:可实现甲醇和碳酸二甲酯的工业化分离,并将再生塔回收的萃取剂重复循环利用,具有很好的工业价值。考察萃取剂进料位置、萃取剂与恒沸物的摩尔比和回流比等操作参数对分离性能的影响,给出各塔的优化操作参数,总结其热负荷和分离效果。  相似文献   

17.
一般方法难以分离异丙醇-水形成的共沸体系,故选用乙二醇为萃取剂,采取连续萃取精馏的方法应用Aspen Plus软件模拟其分离过程并进行分析。萃取精馏塔的初始参数为物料进料流率4 800 kmol/h、n(异丙醇)∶n(水)=3∶2,理论塔板数26块、物料进料位置为第16块塔板、最小回流比1.4、萃取剂进料位置为第4块塔板,可分离得到质量分数为99.5%的异丙醇,再用Aspen Plus中Model Analysis Tools模块的灵敏度分析对实验进行模拟优化,优化结果为理论塔板数28块、物料进料位置第17块塔板、最小回流比1.5、萃取剂进料位置第4块塔板,优化后异丙醇的质量分数可达到99.8%。  相似文献   

18.
文章对异丙醇-水共沸体系的连续萃取精馏工艺进行模拟与优化。通过绘制拟二元汽液平衡相图,筛选出合适的萃取剂为三甘醇。确定了双塔连续萃取精馏的工艺流程。结果表明,对于处理流量100 kmol/h的异丙醇-水共沸溶液,精馏塔具有23块塔板时,原料进料位置在第15块塔板,萃取液进料位置在第3块塔板,摩尔回流比为2,溶剂比(萃取剂对原料的摩尔比)为1.2,异丙醇的分离效果达99.92%,萃取剂三甘醇的回收率达99.99%。模拟和优化的结果对工业化设计和生产提供了理论依据。  相似文献   

19.
针对聚芳醚树脂聚合过程产生的环丁砜废水的处理,提出了以二氯甲烷为萃取剂的萃取-精馏耦合新工艺。选用NRTL活度系数模型,采用Aspen plus流程模拟软件对萃取-精馏耦合工艺处理环丁砜废水的过程进行模拟研究,并应用灵敏度分析工具分别对萃取塔和精馏塔进行参数优化。模拟结果表明,当萃取塔的平衡级数为7、萃取相比为1∶1、精馏塔的理论板数为5、进料位置为第3块理论板时,废水中环丁砜的浓度从100g/L降至34mg/L,同时得到质量分数为98.31%的环丁砜,环丁砜的回收率达到99.95%,处理后的水和环丁砜都能够满足在聚芳醚树脂生产过程中循环使用的要求。与现有的四效蒸发工艺相比,萃取-精馏耦合工艺的热负荷降低了约37%,具有非常好的工业应用前景。  相似文献   

20.
王玉春  张志浩  高源  李忠  郑华艳 《化工进展》2021,40(8):4196-4204
运用Aspen Plus软件回归文献数据校正了碳酸二甲酯(DMC)-水(H2O)混合物的UNIQUAC热力学模型参数,并以该模型为基础分析了水作为萃取剂萃取精馏分离DMC-甲醇(CH3OH)-水三元混合物的分离原理,结合混合组分的三角相图和物料组成设计了反向萃取精馏工艺,发现选用水为萃取剂可以利用DMC-水的部分互溶特性,通过三塔精馏即可分离DMC-甲醇-水三元混合物,沸点较高的DMC和少量水由塔顶馏出,而沸点较低的甲醇和大部分水由塔底采出,避免了DMC-甲醇二元共沸物的形成。同时,在相同分离要求下设计了变压精馏工艺,通过对两个精馏工艺参数模拟优化,发现萃取精馏工艺的总冷凝负荷和总加热负荷分别为888.7kW和898.2kW,其总能耗较变压精馏工艺节约了47.2%,萃取精馏工艺的年总费用(TAC)比变压精馏工艺下降了48.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号