首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
生物质能源是惟一可再生、可替代化石能源转换成气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要对生物质的热解气化方式进行了介绍,着重介绍了生物质气化集中供气、供热、发电、合成液体燃料、制氢等技术方面的研究和应用现状,并指出了目前存在的主要问题,提出了我国在生物质气化领域的重点研究方向。  相似文献   

2.
生物质能源是惟一的可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或产品的碳资源。随着化石能源的枯竭和人类对全球性环境污染问题的关注,生物质能替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质能源为主要原料,通过不同的途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要介绍了国内外生物质发电的技术和设备的发展状况,及一些国家对生物质发电的规划,重点介绍了目前主要的发电技术:直燃发电、气化发电和沼气发电。  相似文献   

3.
2019年,中国石油和天然气消费所排放的CO2为21.1亿吨,占全国总排放量的21%。在我国2060年碳中和目标下,石化行业亟需碳中和技术创新。本文介绍了国内外石化行业碳中和政策措施,从碳减排、碳零排和碳负排三方面分析了石化行业碳中和技术路径。碳减排方面包括石油/天然气绿色开发、过程低碳利用、减污降碳协同技术;碳零排方面包括可再生能源与核能发电、绿氢以及零碳原料/燃料替代,如生物质制汽柴油、芳烃等大宗能源化学品技术;碳负排方面包括生物能源与碳捕获和存储(BECCS)及CO2转化燃料化学品技术。此外,还介绍了石化行业碳中和信息技术,包括人工智能、大数据和物联网三方面。本文将为我国石化行业碳中和路径探索提供技术参考。  相似文献   

4.
生物质能源是唯一可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要综述生物质成型燃料的种类、研究与开发利用进展状况。重点讨论了生物质成型燃料的生产技术和设备,并指出了目前存在的主要问题和今后的发展方向。  相似文献   

5.
生物质能源是惟一可再生,可替代化石能源转化气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要阐述了国内外纤维素生物质预处理的研究进展和酸水解工艺。并对一些工艺的优缺点进行了分析和比较,指出了纤维素生物质预处理和酸水解的研究方向。  相似文献   

6.
生物质能源是惟一可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要概述生物柴油产业化制备技术研究现状,分析我国生物柴油产业化制备技术发展缓慢的原因,主要介绍了生物柴油常用的制备方法及其优缺点,预测了我国生物柴油产业化发展方向。  相似文献   

7.
生物质能源转化技术与应用(Ⅰ)   总被引:8,自引:3,他引:5  
生物质能源是唯一可再生、可替代化石能源转化成液态和气态燃料以及其它化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本文综述了我国年可获得生物质资源量达到3.14亿吨煤当量,其中秸秆和薪材分别占 54% 和 36%;现有180多亿吨林木生物质资源量、8~10亿吨可获得量和3亿吨可作为能源的利用量。生物质能转化利用的主要途径是:热化学高效转化利用的热解气化发电(供热、供气)、快速热解制备液体燃料和生物质气化合成液体燃料,以及生物化学转化技术等。同时,论述了目前已经进行的生物质研究开发技术和产业化利用进展。  相似文献   

8.
在碳中和目标下,未来发展之路是从化石能源的原料体系转变到可再生能源的原料体系。作为化石资源的重要替代品,生物质是唯一能够大规模取代化石资源的可再生碳资源。生物质快速热解技术是实现生物质资源转化为液体燃料的重要途经,其技术核心是反应器。下行式循环流化床反应器具有产物停留时间短、近平推流性能等优点,在生物质快速热解方面具有广阔的应用前景。本文介绍了流化床反应器的特点及其中试和示范/商业级装置的研究现状,详细总结了下行床反应器的特点、结构、分类及流体力学特性,并分析了目前下行床反应器放大过程中的瓶颈问题以及进一步研究的方向,为推动下行床反应器在生物质快速热解工业应用提供参考。  相似文献   

9.
生物质能源和石油替代产品的研究、开发和应用,是保障能源供应、减少对化石能源的依赖、解决未来能源问题的有效途径。综述了目前国内外生物质能的转化利用技术,主要包括直接燃烧技术、生化转化技术(发酵和厌氧性消化)、热化学转化技术(气化、热解)、液化技术、致密成型技术、超临界流体转化技术等;介绍了生物质转化技术的应用,包括生物质气化发电、气化制氢、热裂解制氢、发酵法生产燃料乙醇、热裂解制生物油、固化成型制固态燃料、堆肥发酵制肥料、厌氧性消化生产沼气、催化裂解生产生物燃料等。对未来的生物质能利用技术的发展进行了展望。  相似文献   

10.
生物质能源是惟一可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或者产品的碳资源.随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点.本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料.本讲主要概述生物柴油产业化制备技术研究现状,分析我国生物柴油产业化制备技术发展缓慢的原因,主要介绍了生物柴油常用的制备方法及其优缺点,预测了我国生物柴油产业化发展方向.  相似文献   

11.
徐鑫  陈骁  咸漠 《化工进展》2015,34(11):3825-3831
生物基化学品是以可再生的生物质为原料,以生物细胞或酶蛋白为催化剂合成的产品。由于摆脱了对化石原料的依赖,同时避免了石油基产品制备过程的高能耗高污染,为了资源和环境的绿色、可持续发展,以可再生的生物质资源为原料,以生物转化技术制备化学品是未来发展的主要趋势。本文对目前国内外生物基化学品研发及生产概况进行综述,预测生物基化学品制造业将朝着为原料多元化、生物转化过程高效化、产品高值化的方向发展,针对生物转化过程高效化的关键科学问题进行深入探讨,提出生物学科与其他学科交叉融合是生物基化学品制造技术未来的发展方向,包括生物技术自身融合、生物与化工技术融合及生物与过程控制技术融合。  相似文献   

12.
13.
The rapid increase in energy demand, the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector. Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL) transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels. Therefore, development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels, such as, gasoline, diesel and jet fuel can be accomplished through various thermochemical processes and processing routes. The major steps for the production of BtL fuels involve feedstock selection, physical pretreatment, production of bio-oil, upgrading of bio-oil to transportation fuels and recovery of value-added products. The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.  相似文献   

14.
With the objective of a more sustainable circular economy, one long‐term goal is the utilization of renewable resources as feedstock for the production of polymer‐based materials. In order to successfully process such materials using existing industrial‐scale technologies or even recycling processes, the natural polymers must have thermoplastic properties. With only a few exceptions, natural polymers are not thermoplastic. However, chemical and physical modification techniques are able to induce thermoplasticity in natural polymers from biomass resources such as cellulose, lignin, and chitin. Modification techniques focus on masking the hydroxyl groups to disrupt dense hydrogen bonding and so enable polymer chain mobility upon heating. The introduction of long alkyl chains into the polymer backbone effectively improves the thermoplastic processing of natural polymers. With regard to polymer blending, chemical grafting and graft copolymerization are powerful tools for enhancing compatibility. For both chemical and physical modification, solvents such as ionic liquids and deep eutectic solvents are currently being explored for biomass and fiber processing and show promise for the future development of thermoplastic biopolymers. This review describes possible modifications, potential processing difficulties, and gives a summary of relevant studies described in the scientific literature.  相似文献   

15.
我国化学工业中清洁生产技术的研究进展   总被引:1,自引:0,他引:1  
陈和平  包存宽 《化工进展》2013,32(6):1407-1414
分析了我国化学工业清洁生产研究概况,指出我国有关清洁生产研究的主要内容集中在循环经济、生态工业园、节能减排、绿色化学和产业链以及清洁生产的评价与审核等方面。总结了我国化学工业中的各种清洁生产技术,包括过程模拟技术、过程集成技术、清洁生产工艺、清洁反应体系、超常规生产技术、催化技术、化工设备的发展和清洁能源等,指出未来清洁生产技术的发展趋势必然是化工生产技术与信息技术、计算机技术、检测技术、智能信息处理技术和装备制造技术等的有机结合,并提出了从生命周期全过程考察清洁生产技术的清洁性以及在清洁生产技术基础上发展循环经济的建议。  相似文献   

16.
Industrial chemicals and materials are currently derived mainly from fossil‐based raw materials, which are declining in availability, increasing in price and are a major source of undesirable greenhouse gas emissions. Plant oils have the potential to provide functionally equivalent, renewable and environmentally friendly replacements for these finite fossil‐based raw materials, provided that their composition can be matched to end‐use requirements, and that they can be produced on sufficient scale to meet current and growing industrial demands. Replacement of 40% of the fossil oil used in the chemical industry with renewable plant oils, whilst ensuring that growing demand for food oils is also met, will require a trebling of global plant oil production from current levels of around 139 MT to over 400 MT annually. Realisation of this potential will rely on application of plant biotechnology to (i) tailor plant oils to have high purity (preferably >90%) of single desirable fatty acids, (ii) introduce unusual fatty acids that have specialty end‐use functionalities and (iii) increase plant oil production capacity by increased oil content in current oil crops, and conversion of other high biomass crops into oil accumulating crops. This review outlines recent progress and future challenges in each of these areas. Practical applications: The research reviewed in this paper aims to develop metabolic engineering technologies to radically increase the yield and alter the fatty acid composition of plant oils and enable the development of new and more productive oil crops that can serve as renewable sources of industrial feedstocks currently provided by non‐renewable and polluting fossil‐based resources. As a result of recent and anticipated research developments we can expect to see significant enhancements in quality and productivity of oil crops over the coming decades. This should generate the technologies needed to support increasing plant oil production into the future, hopefully of sufficient magnitude to provide a major supply of renewable plant oils for the industrial economy without encroaching on the higher priority demand for food oils. Achievement of this goal will make a significant contribution to moving to a sustainable carbon‐neutral industrial society with lower emissions of carbon dioxide to the atmosphere and reduced environmental impact as a result.  相似文献   

17.
杨贺勤  刘志成  谢在库 《化工进展》2016,35(6):1575-1586
当前,我国化学工业面临资源和环境等方面的重大挑战,绿色化工技术对于环境的保护和经济的发展具有至关重要的作用,是化工行业可持续发展的必然选择。本文指出绿色化程度需用原子经济性、综合能耗以及全生命周期低碳等指标进行衡量,总结了实现绿色化的3个基本途径:低碳化、清洁化和节能化,并从生物质低碳可再生资源的化工利用、绿色反应工艺、高效反应与分离设备、绿色溶剂、低温均相催化、绿色制氢以及CO2利用技术等方面,综述了近年来我国绿色化工技术创新上的主要进展。最后,对我国绿色化工技术发展的未来进行了展望,建议以绿色碳科学理念为基础,应重视直接转化技术、输入端和过程中能量的管理以及输出端CO2的集中转化技术等方面的研究开发。  相似文献   

18.
For a successful large scale implementation of biomass-to-liquid fuel for transportation, it is imperative that production of liquid fuel from biomass be maximized. For this purpose, synergistic processes using energy from sustainable carbon-free energy sources are needed. In this paper, we present such novel integrated processes that, when compared to the known conventional conversion methods, have potential to produce nearly three times more liquid fuel from a given quantity of biomass. The new processes treat biomass predominantly as carbon source and rely on the novel integrations to preserve carbon atoms during biomass conversion to liquid fuel. We have named such approach as hybrid hydrogen–carbon (H2CAR) process. Furthermore, we propose a novel synergistic integration between H2CAR and fermentation process where high-level heat from the H2CAR process is used to supply process heat for the fermentation process and CO2 produced during the fermentation is converted to liquid fuel using H2CAR process. This synergy leads to increase in process carbon efficiency (100%) and higher energy efficiency (65.7% vs. 57.2%), significantly decreasing land area requirement to produce liquid fuel compared to fermentation-based processes. Such synergistically integrated processes provide attractive opportunities for process design, operation and control.  相似文献   

19.
随着石化资源的不断枯竭和石油价格的飞涨,以化石资源为原料的化学品生产受到了严峻的挑战。可再生的生物质作为化石资源的替代原料进行化学品的生产可以减少对石化资源的依赖,对于人类可持续发展战略具有重要意义。生物质发酵得到生物乙醇,然后以乙醇为平台通过催化转化的方法得到下游化学品,是从生物质得到化学品的重要方法。本文综述了以乙醇转化成其它下游化学品的催化过程,着重介绍和评价了乙醇催化制氢、催化脱水制乙烯以及其它化学品开发的发展状况。最后讨论了当前亟待解决的问题和对策。  相似文献   

20.
刘立  蒋鹏  王伟  张同桓  穆立文  陆小华  朱家华 《化工学报》2022,73(11):5230-5239
生物质可以替代化石燃料,减少温室气体排放,是一种有前途的可再生能源。生物质通过化学链气化制备氢气,碳化活化制备活性炭,两条工艺路线耦合可以联产绿色能源氢气和具有高附加值的活性炭,但是原材料选择和工艺参数优化成为规模化生产的主要障碍。在生物质联产氢气和活性炭工艺模型的基础上,建立高性能的随机森林预测模型,并探究生物质组分、工艺参数和过程产物对联产工艺的相对重要性。结果表明:生物质组分中的灰分、碳元素、氢元素的含量以及气体重整温度和水蒸气用量是准确预测氢气浓度和产量的重要影响因素。其中,重整温度、合成气中氢气浓度、水蒸气用量三个影响因素对氢气浓度的影响高达61%,活化剂用量、水蒸气用量两个因素对氢气产量的影响高达63%。此外,基于随机森林模型对生物质制氢过程中的因素进行分析和优化,可以实现氢气浓度达到96.8%(体积)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号