首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Si3N4–SiC composite ceramics used for volumetric receivers were fabricated by pressureless sintering of micrometer SiC, Si3N4, andalusite, and other minor additions powders. Mechanical, thermal expansion, thermal conductivity, and thermal shock resistance properties were tested at different sintering temperatures. The best sintering temperature of optimum formula A2 is 1360°C, and the bending strength reaches 79.60 Mpa. And moreover, its thermal expansion coefficient is 6.401 × 10?6/°C, thermal conductivity is 7.83 W/(m K), and no crack occurs even subjected to 30 cycles thermal shock with a bending strength increase rate of 4.72%. X‐ray diffraction results show that the phase constituents of the sintered products mainly consist of SiC, Si3N4, mullite, and quartz. Microstructure that is most appropriate and exhibits maximal thermal shock resistance was detected using SEM. The porosity of Si3N4–SiC ceramic foam prepared from formula A2 is 95%, which provides a rapid and steady action for the receiver. The evaluation of the present foam shows that Si3N4–SiC ceramic composite is a good candidate for volumetric receivers.  相似文献   

2.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

3.
To improve mechanical behaviors of silicon nitride ceramics, here we introduced a novel external field—vibratory pressure into the sintering of Si3N4 ceramics with advantages of higher density, more uniform distribution of interfacial phase, higher sintering motivation in the width direction, and therefore more favorable mechanical properties than traditional sintering methods. Grain size and aspect ratio of the two ceramics were investigated with linear intercept method. Flexural strength of the vibratory‐assisted hot‐pressing (VAHP) specimen increased from 936 ± 27.2 MPa to 1247 ± 28.9 MPa, and an increase of 10% was achieved in fracture toughness. It is believed that such VAHP method can provide a universal approach and new opportunities for the fabrication of covalent‐bonded ceramics or composites with enhanced performances.  相似文献   

4.
The impact of Si3N4 and SiC additives incorporation in the microstructure and sintering behavior of TiB2-based composites were studied. Three ceramic composites including TiB2–Si3N4, TiB2–SiC, and TiB2–SiC–Si3N4 were manufactured by spark plasma sintering (SPS) at 1950 °C for 8 min under 35 MPa. The acquired ceramics were analyzed by X-ray diffractometry and scanning electron microscopy. In addition, the sintering thermodynamic was investigated using the HSC Chemistry package. X-ray diffraction patterns of the prepared ceramics revealed the in-situ formation of graphite and boron nitride in the final composites initiated from SiC and Si3N4, respectively. The thermodynamic assessments proved the role of liquid phase sintering on the sinterability enhancement of all composite samples. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy verified the in-situ formation of both BN and graphite components in the sample containing SiC and Si3N4 additives. Finally, the fractographical investigations clarified the transgranular breakage as the main fracture mode in the TiB2-based ceramics.  相似文献   

5.
Hexagonal graphitic boron nitride (h-BN) composites show excellent corrosion and thermal shock resistance, good mechanical tolerance and machinability, especially Si3N4–BN and Sialon–BN composites; they have already been used as break rings for horizontal continuous casting of steel. However, the strength of the conventionally processed BN composites were remarkably degraded by the addition of BN due to the poor densification behavior and the existence of large BN flakes or agglomerates of BN flakes that acted as fracture flaws. This means that BN dispersoids with fine particle size and homogeneous distribution are the key factors to obtain high strength composites. By in situ process, such microstructural features can be realized. In this work, by using the proposed in situ reactions, synthesis, microstructures and properties of various in situ nonoxide-boron nitride (Nobn) composites including SiC–BN, Si3N4–BN, AlN–BN, Sialon–BN and Alon–BN composites were investigated. For some Nobn composite systems, due to the large volume expansion during the reaction processes, near-net shape sintering can be realized. For example, the sintering shrinkage of AlN-30 vol.% BN was 3.1% and that of Alon-21 vol.% BN was 4.2%. This will be an advantage for the fabrication of large and complicated products.  相似文献   

6.
Reaction‐bonded boron carbide was manufactured by infiltrating porous boron carbide preforms at 1273 K with a Mg‐Si eutectic alloy. The resulting composite material consists, in addition to the original B4C, of SiC, Mg2Si, and a Mg‐rich complex boride/carbide Mgx(Al,Si)y(B,C)z phase. The composites display high hardness (1700 HV), Young's modulus (356 MPa) and a moderate bending strength (230 MPa). The ballistic efficiency (of about 6.7), as determined by the depth of penetration method, is much higher than that of alumina and similar to that of silicon‐infiltrated reaction‐bonded composites.  相似文献   

7.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

8.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

9.
《Ceramics International》2016,42(12):13525-13534
Cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline were fabricated via pressureless sintering at a low sintering temperature with added Sm2O3. The effects of Sm2O3 on sintering behaviors, mechanical property, phase transformation, microstructure, thermal shock resistance and thermal conductivity of the composite ceramics were investigated. TEM analysis results demonstrated that Sm3+ located in glass and grain boundaries to facilitate the densification via the liquid-phase sintering mechanism and improve bending strength by grain refinement, respectively. Proper addition (3 wt%) of Sm2O3 could promote the crystallization of cordierite, and improve thermal shock resistance of the composite ceramics with an increasing rate of 16.70% for bending strength after 30 thermal shock cycles (air cooling from 1100 °C to RT). The composite ceramics possessed a superior thermal shock resistance, where a large amount of particles were formed to suppress crack initiation and propagation during thermal shock. Cordierite-mullite-corundum composite ceramics with proper Sm2O3 addition (3 wt%) had a lower thermal conductivity than that of composite ceramics without Sm2O3 addition by strengthening the scattering of phonon, which could reduce the heat loss during solar heat transmission process.  相似文献   

10.
Silicon nitride hollow quasi‐spheres (SNHQSs) are prepared via a two‐step method: producing micrometer‐sized agglomerated granules with β‐Si3N4, and sintering additives of nano‐alumina and nano‐yttria by spray‐drying and then hollowing the spray‐dried granules (SDGs) by radio frequency thermal plasma sintering. Five kinds of slurry with different content of sintering additives are prepared for spray‐drying, and the attained five kinds of SDGs have similar morphology and properties. However, different SDGs generate diverse hollow structures via plasma sintering. The cavity formation mechanism of the SNHQSs is deeply investigated. In addition, the obtained SNHQSs possess low apparent density (0.371–0.481 g/mL), high compressive strength (up to 50 MPa), and good thermal stability (up to 1600°C), which will enable their promising applications in porous ceramics.  相似文献   

11.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

12.
《Ceramics International》2016,42(12):13547-13554
Cordierite-spodumene composite ceramics with 5, 10, 15 wt% spodumene used for solar heat transmission pipeline were in-situ prepared via pressureless sintering from kaolin, talc, γ-Al2O3 and spodumene. Effects of spodumene on densification, mechanical properties, thermal shock resistance, phase composition and microstructure of the composite ceramics were investigated. The results showed that spodumene used as flux material decreased the sintering temperature greatly by 40–80 °C, and improved densification and mechanical properties of the composite ceramics. Especially, sample A3 with 10 wt% spodumene additive sintered at 1380 °C exhibited the best bending strength and thermal shock resistance. The bending strengths of A3 before and after 30 thermal shock cycles (wind cooling from 1100 °C to room temperature) were 102.88 MPa and 96.29 MPa, respectively. XRD analysis indicated that the main phases of the samples before 30 thermal shock cycles were α-cordierite, α-quartz and MgAl2O4, and plenty of β-spodumene appeared after thermal shock. SEM micrographs illustrated that the submicron β-spodumene grains generated at the grain boundaries after thermal shock improved the thermal shock resistance. It is believed that the cordierite-spodumene composite ceramics can be a promising candidate material for heat transmission pipeline in the solar thermal power generation.  相似文献   

13.
Silicon nitride ceramics were prepared from a high‐purity silicon powder doped with 2 mol% Y2O3 and 5 mol% MgO as sintering additives via a route of sintering of reaction‐bonded silicon nitride (SRBSN). The materials sintered at 1900°C for 3, 6, 12, and 24 h had thermal conductivities of 109, 125, 146, and 154 W/m/K, and four‐point bending strengths of 786, 676, 608, and 505 MPa, respectively. The fracture toughness values, determined by the single‐edge‐precracked‐beam (SEPB) method, were 8.4, 8.6, 9.7, and 10.7 MPa m1/2 for the materials sintered for 3, 6, 12, and 24 h, respectively, which were similar to the results measured by the chevron‐notched‐beam (CNB) test method. The materials sintered for longer times (12 and 24 h) showed stronger R‐curve behaviors over longer range of crack extension, in comparison with the materials sintered for shorter times (3 and 6 h).  相似文献   

14.
《Ceramics International》2017,43(4):3741-3747
Silicon carbide reticulated porous ceramics (SiC RPCs) with three-layered struts were fabricated by polymer replica method, followed by infiltrating alumina slurries containing silicon (slurry-Si) and andalusite (slurry-An), respectively. The effects of composition of infiltration slurries on the strut structure, mechanical properties and thermal shock resistance of SiC RPCs were investigated. The results showed that the SiC RPCs infiltrated with slurry-Si and slurry-An exhibited better mechanical properties and thermal shock resistance in comparison with those of alumina slurry infiltration, even obtained the considerable strength at 1300 °C. In slurry-Si, silicon was oxidized into SiO2 in the temperature range from 1300 °C to 1400 °C and it reacted with Al2O3 into mullite phase at 1450 °C. Meantime, the addition of silicon in slurry-Si could reduce SiC oxidation of SiC RPCs during firing process in contrast with alumina slurry. With regard to slurry-An, andalusite started to transform into mullite phase at 1300 °C and the secondary mullitization occurred at 1450 °C. The enhanced mechanical properties and thermal shock resistance of SiC RPCs infiltrated alumina slurries containing silicon and andalusite were attributed to the optimized microstructure and the triangular zone (inner layer of strut) with mullite bonded corundum via reaction sintering. In addition, the generation of residual compressive stress together with better interlocked needle-like mullite led to the crack-deflection in SiC skeleton, thus improving the thermal shock resistance of obtained SiC RPCs.  相似文献   

15.
O'-Sialon/Si3N4 composite ceramics for solar absorber were prepared in situ through pressureless sintering from Si3N4 and low pure Al2O3 with different rare-earth oxides (i.e., Yb2O3 and Gd2O3). This study investigates the effects of Yb2O3 and Gd2O3 on phase composition, microstructure, densification, oxidation resistance and solar absorptance. The results revealed that Yb2O3 and Gd2O3, which were applied as flux materials, significantly reduced the sintering temperature and improved the densification, oxidation resistance of the composite ceramics. Moreover, the introduction of the two sintering aids promoted the formation of O'-Sialon through the liquid-phase sintering mechanism. The samples doped with Gd2O3 exhibited more O'-Sialon content, lower porosity, and better oxidation resistance compared with those doped with Yb2O3. Especially, sample A2 (6 wt% Gd2O3 additional) sintered at 1600 °C exhibited the best comprehensive properties for 10.10% water absorption, 23.29% porosity, 105.57 MPa bending strength, 75.16% solar absorption. Dense oxide layers were generated on sample surfaces after oxidation at 1300 °C, which protected the ceramics samples from further oxidation. However, the two additives had characteristic reflection peaks in the ultraviolet–visible region (300–400 nm) and were also blamed for high reflectivity in the near–infrared region, which resulted in the decrease in absorption.  相似文献   

16.
《Ceramics International》2021,47(22):31277-31285
In this study, a high-strength silicon nitride (Si3N4) antenna window was successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding before final sintering. The effects of CIP after debinding and sintering aids on the bulk density, total porosity, bending strength and microstructure of Si3N4 ceramics were examined. The results show that the bending strength of SLS Si3N4 ceramics can be greatly improved by adding sintering aids between Si3N4 granules and by CIP after debinding. Optimal performance of ceramics is obtained by CIP after debinding and the use of inter-granule sintering aids. The porosity, bulk density, and bending strength are 18.7%, 3.11 g/cm3, and 685 MPa, respectively. Eliminating the pores by the CIP after debinding and by inter-granule sintering aids promotes the growth of rod-like β-Si3N4, which lock with each other contribute to the strengthening of Si3N4 ceramics.  相似文献   

17.
《Ceramics International》2021,47(20):28218-28225
Si3N4–SiC/SiO2 composites were prepared by employing three-dimensional (3D) printing using selective laser sintering (SLS) and infiltration processing. The process was based on the infiltration of silica sol into porous SLS parts, and silicon carbide and silicon nitride particles were bonded by melted nano-sized silica particles. To optimize the manufacturing process, the phase compositions, microstructures, porosities, and flexural strengths of the Si3N4–SiC/SiO2 composites prepared at different heat-treatment temperatures and infiltration times were compared. Furthermore, the effects of the SiC mass fraction and the addition of Al2O3 and mullite fibers on the properties of the Si3N4–SiC/SiO2 composites were investigated. After repeated infiltration and heat treatment, the flexural strength of the 3D-printed Si3N4–SiC/SiO2 composite increased significantly to 76.48 MPa. Thus, a Si3N4–SiC/SiO2 composite part with a complex structure was successfully manufactured by SLS and infiltration processes.  相似文献   

18.
In order to find out the influence of sintering additives on the electrical conductivity of Si3N4-based ceramics composites with dispersed carbon nano-fibers (CNFs) two different mixtures of sintering additives were tested – Al2O3/Yb2O3 and MgSiN2/Yb2O3, respectively. Optimization of hot-pressing conditions was performed for each mixture. The results show that the electrical conductivity can be effectively increased up to 1315 S/m by replacement of traditional sintering aid – alumina, with magnesium silicon nitride, while the mechanical properties remained on the same level. Other advantages of using MgSiN2 instead of alumina are the preservation of higher amounts of CNFs in the ceramic composite and lower densification temperature (1500 °C) compared to samples sintered with alumina-based sintering aids (1550 °C).  相似文献   

19.
《Ceramics International》2022,48(4):4851-4857
This study investigated the activation energy and kinetic characteristics of silicon nitride (Si3N4) composite ceramics produced using different preparation methods. The effects of the linear shrinkage, expansion ratio, and heating rate on the sintering process were analysed in detail. The obtained results reveal that the finer particle size produced using the urea homogeneous precipitation method obviously enhanced the densification rate and reduced the atomic diffusion distance. Moreover, the densification sintering process was carried out efficiently, and the largest densification rate was achieved in advance. According to the Arrhenius curve, the activation energy of the Si3N4 composite ceramics calculated using the urea homogeneous precipitation method (310.94 kJ/mol) was lower than that achieved using the mechanical ball-milling method (365.11 kJ/mol). Additionally, the flexural strength and hardness of the Si3N4 composite ceramic prepared using the urea homogeneous precipitation method were 740 ± 42 MPa and 16.20 ± 30 GPa, respectively, which is attributed to this composite ceramic's higher diffusion rate and small grain size.  相似文献   

20.
《Ceramics International》2023,49(5):7987-7995
Monolithic Al2O3 and Al2O3-graphene-SiC hybrid composites were prepared by spark plasma sintering (SPS) under vacuum atmosphere. The results show that the hybrid composites were almost completely dense (>97%). SiC content has a significant effect on the microstructure of the composites. With the increase of SiC content, the average grain size of alumina decreased gradually. The addition of SiC to alumina changed fracture mode from inter-granular fracture to mixed fracture mode of inter-granular fracture and trans-granular fracture. The Al2O3-0.4 wt%graphene-5 wt% SiC hybrid composite has the highest bending strength and hardness, which were 57% and 19.22% higher than those of the monolithic alumina, respectively. The room temperature (RT) thermal conductivity of the monolithic Al2O3 (25.5 W/m·K) was the highest. The thermal conductivity and thermal diffusivity coefficient of the composites decreased with the increase in temperature, while the specific heat of monolithic alumina and composites increased with the increase in temperature and additives. These properties were related to the microstructure of materials and the possible transport mechanisms were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号