首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.  相似文献   

3.
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3′ untranslated region (3′-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.  相似文献   

4.
Recent data demonstrate the anabolic effect of oxytocin on bone. Bone cells express oxytocin receptors. Oxytocin promotes osteoblasts differentiation and function, leading to an increased bone formation with no effect on bone resorption and an improvement of bone microarchitecture. Oxytocin is synthetized by osteoblasts, and this synthesis is stimulated by estrogen. Animal studies demonstrate a direct action of oxytocin on bone, as the systemic administration of oxytocin prevents and reverses the bone loss induced by estrogen deficiency. Although oxytocin is involved in bone formation in both sexes during development, oxytocin treatment has no effect on male osteoporosis, underlining the importance of estrogen that amplifies its local autocrine and paracrine secretion. There are few human data showing a decrease in the oxytocin serum level in anorexia nervosa independently of estrogen and in amenorrheic women associated with impaired bone microarchitecture; in post-menopausal women a higher oxytocin serum level is associated with higher bone density, but not in osteoporotic men. Oxytocin displays many effects that may be beneficial in the management of osteoporosis, cardiovascular diseases, cognitive disorders, breast cancer, diabetes and body fat gain, all age-related diseases affecting elderly women, opening exciting therapeutic perspectives, although the issue is to find a single route, dosage and schedule able to reach all these targets.  相似文献   

5.
Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.  相似文献   

6.
MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.  相似文献   

7.
We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.  相似文献   

8.
Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.  相似文献   

9.
To investigate the effect of oligodeoxynucleotides (ODNs) on the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) to osteoblasts, in order to find a candidate ODN with potential for the treatment of periodontitis, a series of ODNs were designed and selected to test their effect on the promotion of the differentiation of BMSCs to osteoblasts in vitro and on the repair of periodontal tissue in rats with periodontitis. It was found that MT01, one of the ODNs with the sequences of human mitochondrial DNA, stimulated the proliferation of BMSCs, the differentiation of BMSCs to osteoblasts and mRNA expression of bone-associated factors including Runx2, Osterix, OPG, RANKL and collagen I in vitro. In vivo study showed that MT01 prevented the loss of alveolar bone in the rats with periodontitis and induced the production of proteins of OPG and Osterix in the bone tissue. These results indicated that MT01 could induce differentiation of BMSCs to osteoblasts and inhibit the alveolar bone absorption in rats with periodontitis.  相似文献   

10.
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.  相似文献   

11.
12.
Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.  相似文献   

13.
14.
Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.  相似文献   

15.
A review of the available literature was performed in order to summarize the existing evidence between osteoblast dysfunction and clinical features in non-hereditary sclerosing bone diseases. It has been known that proliferation and migration of osteoblasts are concerted by soluble factors such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), bone morphogenetic protein (BMP) but also by signal transduction cascades such as Wnt signaling pathway. Protein kinases play also a leading role in triggering the activation of osteoblasts in this group of diseases. Post-zygotic changes in mitogen-activated protein kinase (MAPK) have been shown to be associated with sporadic cases of Melorheostosis. Serum levels of FGF and PDGF have been shown to be increased in myelofibrosis, although studies focusing on Sphingosine-1-phosphate receptor was shown to be strongly expressed in Paget disease of the bone, which may partially explain the osteoblastic hyperactivity during this condition. Pathophysiological mechanisms of osteoblasts in osteoblastic metastases have been studied much more thoroughly than in rare sclerosing syndromes: striking cellular mechanisms such as osteomimicry or complex intercellular signaling alterations have been described. Further research is needed to describe pathological mechanisms by which rare sclerosing non hereditary diseases lead to osteoblast dysfunction.  相似文献   

16.
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form “type H” capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.  相似文献   

17.
Graft cell repopulation and tendon-bone tunnel healing are important after allograft anterior cruciate ligament reconstruction (ACLR). Freshly isolated bone marrow mononuclear cells (BMMNCs) have the advantage of short isolation time during surgery and may enhance tissue regeneration. Thus, we hypothesized that the effect of intra-articular BMMNCs in post-allograft ACLR treatment is comparable to that of cultured bone marrow stromal cells (BMSCs). A rabbit model of hamstring allograft ACLR was used in this study. Animals were randomly assigned to the BMMNC, BMSC, and control groups. Fresh BMMNCs isolated from the iliac crest during surgery and cultured BMSCs at passage four were used in this study. A total of 1 × 107 BMMNCs or BMSCs in 100 µL phosphate-buffered saline were injected into the knee joint immediately after ACLR. The control group was not injected with cells. At two and six weeks post operation, we assessed graft cell repopulation with histological and cell tracking staining (PKH26), and tendon-bone healing with histological micro-computed tomography and immunohistochemical analyses for collagen I and monocyte chemoattractant protein-1 (MCP1). At two weeks post operation, there was no significant difference in the total cell population within the allograft among the three groups. However, the control group showed significantly higher cell population within the allograft than that of BM cell groups at six weeks. Histological examination of proximal tibia revealed that the intra-articular delivered cells infiltrated into the tendon-bone interface. Compared to the control group, the BM cell groups showed broader gaps with interfacial fibrocartilage healing, similar collagen I level, and higher MCP1 expression in the early stage. Micro-CT did not reveal any significant difference among the three groups. BMMNCs and BMSCs had comparable effects on cell repopulation and interfacial allograft-bone healing. Intra-articular BM cells delivery had limited benefits on graft cell repopulation and caused higher inflammation than that in the control group in the early stage, with fibrocartilage formation in the tendon-bone interface after allograft ACLR.  相似文献   

18.
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.  相似文献   

19.
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.  相似文献   

20.
Despite modern surgical trauma care, bleeding contributes to one-third of trauma-related death. A significant improvement was obtained through the introduction of tranexamic acid (TXA), which today is widely used in emergency and elective orthopedic surgery to control bleeding. However, concerns remain regarding potential adverse effects on bone turnover and regeneration. Therefore, we employed standardized cell culture systems including primary osteoblasts, osteoclasts, and macrophages to evaluate potential effects of TXA on murine bone cells. While osteoblasts derived from calvarial digestion were not affected, TXA increased cell proliferation and matrix mineralization in bone marrow-derived osteoblasts. Short-term TXA treatment (6 h) failed to alter the expression of osteoblast markers; however, long-term TXA stimulation (10 days) was associated with the increased expression of genes involved in osteoblast differentiation and extracellular matrix synthesis. Similarly, whereas short-term TXA treatment did not affect gene expression in terminally differentiated osteoclasts, long-term TXA stimulation resulted in the potent inhibition of osteoclastogenesis. Finally, in bone marrow-derived macrophages activated with LPS, simultaneous TXA treatment led to a reduced expression of inflammatory cytokines and chemokines. Collectively, our study demonstrates a differential action of TXA on bone cells including osteoanabolic, anti-resorptive, and anti-inflammatory effects in vitro which suggests novel treatment applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号