首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach. The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are de-fined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exem-plified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable. ? 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

2.
基于非线性主元分析和符号有向图的故障诊断方法   总被引:1,自引:1,他引:0       下载免费PDF全文
黄道平  龚婷婷  曾辉 《化工学报》2009,60(12):3058-3062
Nonlinear principal component analysis(NLPCA)fault detection method achieves good detection results especially in a nonlinear process.Signed directed graph(SDG)model is based on deep-going information,which excels in fault interpretation.In this work,an NLPCA-SDG fault diagnosis method was proposed.SDG model was used to interpret the residual contributions produced by NLPCA.This method could overcome the shortcomings of traditional principal component analysis(PCA)method in fault detection of a nonlinear process and the shortcomings of traditional SDG method in single variable statistics in discriminating node conditions and threshold values.The application to a distillation unit of a petrochemical plant illustrated its validity in nonlinear process fault diagnosis.  相似文献   

3.
基于Fisher判别分析和核回归的质量监控和估计   总被引:1,自引:0,他引:1       下载免费PDF全文
A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.  相似文献   

4.
Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higher-order representations for data variables. Recently, a statistics pattern analysis (SPA) framework has been incor-porated into PCA model to make full use of various statistics of data variables effectively. However, these methods omit the local information, which is also important for process monitoring and fault diagnosis. In this paper, a local and global statistics pattern analysis (LGSPA) method, which integrates SPA framework and locality pre-serving projections within the PCA, is proposed to utilize various statistics and preserve both local and global in-formation in the observed data. For the purpose of fault detection, two monitoring indices are constructed based on the LGSPA model. In order to identify fault variables, an improved reconstruction based contribution (IRBC) plot based on LGSPA model is proposed to locate fault variables. The RBC of various statistics of original process variables to the monitoring indices is calculated with the proposed RBC method. Based on the calculated RBC of process variables' statistics, a new contribution of process variables is built to locate fault variables. The simula-tion results on a simple six-variable system and a continuous stirred tank reactor system demonstrate that the proposed fault diagnosis method can effectively detect fault and distinguish the fault variables from normal variables.  相似文献   

5.
在线自适应批次过程监视的双滑动窗口MPCA方法   总被引:1,自引:0,他引:1  
Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database. In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA. The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999.  相似文献   

6.
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is in-troduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to re-trieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.  相似文献   

7.
正The Chinese Journal of Chemical Engineering is the official journal of The Chemical Industry and Engineering Society of China and published by the Chemical Industry Press.The aim of the journal is to develop the international exchange of scientific and technical information in the  相似文献   

8.
The Chinese Journal of Chemical Engineering is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press. The aim of the journal is to develop the international exchange of scientific and technical information in the field of  相似文献   

9.
正The Chinese Journal of Chemical Engineering is the official journal of The Chemical Industry and Engineering Society of China and published by the Chemical Industry Press.The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering.  相似文献   

10.
正The Chinese Journal of Chemical Engineering is the official journal of The Chemical Industry and Engineering Society of China and published by the Chemical Industry Press. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering.  相似文献   

11.
基于双层局部KPCA的非线性过程微小故障检测方法   总被引:1,自引:0,他引:1  
邓晓刚  邓佳伟  曹玉苹  王磊 《化工学报》2018,69(7):3092-3100
针对传统核主元分析(KPCA)方法难以有效检测微小故障的问题,提出一种基于双层局部核主元分析(double-level local kernel principal component analysis,DLKPCA)的非线性过程微小故障检测方法。该方法从变量和样本两个角度来挖掘数据内部的局部信息,以提高故障检测能力。首先,利用变量分块思想,基于不同变量与核主元之间互信息相关度的相似性,将所有过程变量划分多个局部变量块。然后,构建基于得分向量和特征值的残差函数以挖掘样本局部信息。最后利用贝叶斯融合策略对各块的结果进行融合。在田纳西-伊斯曼基准过程的仿真结果表明,在微小故障检测方面,本文所提方法具有比传统KPCA方法更好的故障检测性能。  相似文献   

12.
传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。  相似文献   

13.
蔡配配  邓晓刚  曹玉苹  邓佳伟 《化工进展》2019,38(12):5247-5256
传统核主元分析法(KPCA)是一种广泛应用的非线性化工过程故障检测方法,但是其未充分利用过程数据的概率分布信息,往往难以有效检测过程中的微小故障。针对传统KPCA方法的局限性,本文提出了一种基于加权概率相关核主元分析(WPRKPCA)的非线性化工过程微小故障检测方法。与传统KPCA方法监控核成分的变化不同,该方法利用Kullback Leibler散度(KLD)度量核成分的概率分布变化,进而建立基于KLD成分的统计监控模型,以充分挖掘过程数据所包含的概率信息。进一步考虑到不同KLD成分承载故障信息的差异性,该方法设计了一种基于核密度估计的指数加权策略,根据KLD成分描述故障信息程度的差异分配相应的权值,以加强监控模型对微小故障检测的灵敏性。在一个数值例子和连续搅拌反应器(CSTR)系统上的仿真结果表明,本文所提方法具有比传统KPCA方法更好的微小故障检测性能。  相似文献   

14.
张成  潘立志  李元 《化工学报》2022,73(2):827-837
针对核独立元分析(kernel independent component analysis, KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA, WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始数据中捕获独立元数据和残差数据;然后,通过加权统计特征和滑动窗口获取改进统计特征数据集,并由此数据集构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行过程故障诊断。与传统KICA统计量相比,所提方法的统计量对非线性动态过程中的微小故障具有更高的故障检测性能。应用该方法对一个数值例子和田纳西-伊斯曼(Tennessee-Eastman, TE)过程进行仿真测试,仿真结果显示出所提方法相对于独立元分析(ICA)、KICA、核主成分分析(kernel principal component analysis, KPCA)和统计局部核主成分分析(statistical local kernel principal component analysis, SLKPCA)检测的优势。  相似文献   

15.
Nonlinear process monitoring using kernel principal component analysis   总被引:11,自引:0,他引:11  
In this paper, a new nonlinear process monitoring technique based on kernel principal component analysis (KPCA) is developed. KPCA has emerged in recent years as a promising method for tackling nonlinear systems. KPCA can efficiently compute principal components in high-dimensional feature spaces by means of integral operators and nonlinear kernel functions. The basic idea of KPCA is to first map the input space into a feature space via nonlinear mapping and then to compute the principal components in that feature space. In comparison to other nonlinear principal component analysis (PCA) techniques, KPCA requires only the solution of an eigenvalue problem and does not entail any nonlinear optimization. In addition, the number of principal components need not be specified prior to modeling. In this paper, a simple approach to calculating the squared prediction error (SPE) in the feature space is also suggested. Based on T2 and SPE charts in the feature space, KPCA was applied to fault detection in two example systems: a simple multivariate process and the simulation benchmark of the biological wastewater treatment process. The proposed approach effectively captured the nonlinear relationship in the process variables and showed superior process monitoring performance compared to linear PCA.  相似文献   

16.
卢春红  熊伟丽  顾晓峰 《化工学报》2014,65(12):4866-4874
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性.  相似文献   

17.
In this paper, some drawbacks of original kernel independent component analysis (KICA) and support vector machine (SVM) algorithms are analyzed for the purpose of multivariate statistical process monitoring (MSPM). When the measured variables follow non-Gaussian distribution, KICA provides more meaningful knowledge by extracting higher-order statistics compared with PCA and kernel principal component analysis (KPCA). However, in real industrial processes, process variables are complex and are not absolutely Gaussian or non-Gaussian distributed. Any single technique is not sufficient to extract the hidden information. Hence, both KICA (non-Gaussion part) and KPCA (Gaussion part) are used for fault detection in this paper, which combine the advantages of KPCA and KICA to develop a nonlinear dynamic approach to detect fault online compared to other nonlinear approaches. Because SVM is available for classifying faults, it is used to diagnose fault in this paper.For above mentioned kernel methods, the calculation of eigenvectors and support vectors will be time consuming when the sample number becomes large. Hence, some dissimilar data are analyzed in the input and feature space.The proposed approach is applied to the fault detection and diagnosis in the Tennessee Eastman process. Application of the proposed approach indicates that proposed method effectively captures the nonlinear dynamics in the process variables.  相似文献   

18.
基于改进核主成分分析的故障检测与诊断方法   总被引:9,自引:6,他引:3       下载免费PDF全文
韩敏  张占奎 《化工学报》2015,66(6):2139-2149
针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题, 提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中, 使得到的特征空间不仅具有原始样本空间的整体结构, 还保持样本空间相似的局部近邻结构, 可以包含更丰富的特征信息。在此基础上, 本文使用改进核主成分分析方法把原始变量空间映射到特征空间, 使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限, 进一步利用相似度的性能诊断方法识别发生的故障类型。采用Tennessee Eastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。  相似文献   

19.
Dynamic kernel principal component analysis (DKPCA) has been frequently implemented for nonlinear and dynamic process monitoring of complex industrial processes. However, traditional DKPCA focuses only on the global structural analysis of data sets and strongly neglects the local information, which is equally essential for process detection and identification. In this paper, an improved DKPCA, referred to as the local DKPCA (LDKPCA), is proposed based on local preserving projections (LPP) for nonlinear dynamic process fault diagnosis. The method combines the advantages of LPP and DKPCA by utilizing the local structure feature to maintain the geometric structure of the data in a unified framework. To achieve a highly comprehensive feature extraction, the local characteristics are fused in DKPCA to produce an optimization objective. The neighbouring points of the new objective function projection in the feature space are still maintained in proximity, and the variance information is retained simultaneously. For the purpose of fault detection, two statistics, known as the T2 and squared prediction error (SPE) statistics, are constructed, based on the LDKPCA model, and used to monitor the latent variable space and the residual space, respectively. In addition, the sensitivity analysis is brought in for fault identification of the two statistics. Based on the experimental analysis using the shaft breakage data of an offshore oilfield electric submersible pump (ESP), the proposed method outperforms the conventional DKPCA in terms of fault monitoring performance. The experimental results demonstrate the potential of the method in nonlinear dynamic process fault diagnosis.  相似文献   

20.
范玉刚  李平  宋执环 《化工学报》2006,57(11):2670-2676
基于主元分析(PCA)的统计检测方法已经被广泛应用于各种化工过程的故障检测和识别.移动主元分析(moving principal component analysis,简称MPCA)算法基于PCA,根据主元子空间的变化来判断故障是否发生.然而,基于主元分析的统计检测方法是线性方法,无法有效应用于非线性系统.因此,提出一种适合于非线性系统的故障检测方法——基于核主角(kernel principal angle,简称KPA)的故障检测方法,其基本思想与MPCA相似,主要内容包括构建特征子空间和核主角测量两部分.TE过程故障检测仿真实验证明,基于核主角的故障检测方法优于传统的多元统计检测方法(cMSPC)和MPCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号