首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 390 毫秒
1.
黄瑞连  赵长颖  徐治国 《化工学报》2018,69(7):2890-2898
利用实验手段对梯度金属泡沫池沸腾过程中气泡脱离行为特性进行了探究。实验工质为去离子水、浓度分别为400 mg·L-1和800 mg·L-1的正庚醇溶液。梯度金属泡沫材质为铜和镍,铜泡沫层和镍泡沫层厚度均为4 mm,孔密度分别为40 PPI和10 PPI。实验结果表明:添加正庚醇会使池沸腾气泡脱离直径变小,数目减少,但其浓度变化影响不明显;在热通量6.6×104 W·m-2沸腾时,观察到气泡脱离金属泡沫骨架阻碍两种常见运动形式:气泡破裂和整体滑移;当热通量增加到1.0×105 W·m-2时,相邻的两个气泡在梯度金属泡沫内合并成一个大气泡脱离金属泡沫。  相似文献   

2.
以去离子水作为工质,设计并搭建了以泡沫铜为研究对象的单相和两相换热实验系统。对于单相流动换热,当Re数较小时,孔隙率80%、孔密度90PPI的泡沫铜样品换热性能最好;当Re数较大时,孔隙率80%、孔密度45PPI的泡沫铜样品换热性能最好。泡沫铜最大换热系数为空通道的6倍,但同时需付出更大的泵功损耗为代价。对于两相流沸腾换热,低孔隙率样品70%~80%能有效地降低壁面过热度和强化沸腾换热性能。孔隙率对沸腾换热性能起决定性作用,孔隙率越低,沸腾换热系数越大;孔密度对沸腾换热性能起次要作用。90PPI泡沫铜样品,因其成核址密度高和毛细力较大,有助于提升泡沫铜的沸腾换热性能。  相似文献   

3.
赵雅鑫  赖展程  胡海涛 《化工学报》2021,72(10):5074-5081
泡沫金属具有超大比表面积和高热导率,将其填充于换热管内可用于制冷空调系统的强化传热。研究了R1234ze(E) 在泡沫金属管内的流动沸腾换热和压降特性。实验工况为:干度0.1~0.9,质流密度90~180 kg·m-2?s-1,热通量12.4~18.6 kW·m-2。测试样件为泡沫铜填充管,孔密度为10~40 PPI、孔隙率为90%~95%。实验结果表明,R1234ze(E) 比R410A的传热系数低2%~10%,两相压降低30%~42%;当干度大于0.8时,低质流密度下泡沫金属管内传热系数随干度的增加增幅更大;泡沫金属在强化流动沸腾换热的同时,造成压降显著增加,换热影响因子的范围为1.23~2.90,压降影响因子的范围为6~45。开发了适用于R1234ze(E) 的泡沫金属管内流动沸腾换热和压降关联式,传热系数和两相压降的预测值与95%的实验值误差分别在±15%和±25%以内。  相似文献   

4.
泡沫金属对圆管内R410A流动沸腾压降特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
孙硕  胡海涛  丁国良  朱禹 《化工学报》2012,63(11):3428-3433
对填充泡沫金属的圆管中R410A流动沸腾的两相流压降特性进行了实验研究。实验对象为两根内径13.8 mm,分别填充5 PPI/95%孔隙率和10 PPI/95%孔隙率的泡沫铜的圆管。实验工况涵盖:蒸发压力995 kPa;质流密度30~90 kg·m-2·s-1;热通量5.9~16.5 kW·m-2;入口干度0.175~0.775。实验结果表明:泡沫金属显著增加制冷剂流动沸腾的压降,在入口干度为0.775,质流密度为90 kg·m-2·s-1时,内嵌10 PPI 泡沫金属的圆管中的压降梯度达56 kPa·m-1;泡沫金属PPI越大,压降增加越多,相同工况下内嵌10 PPI泡沫金属圆管中制冷剂流动沸腾的压降是内嵌5 PPI泡沫金属圆管中的压降的1.2倍左右。根据实验数据开发了适用于填充泡沫金属的内径13.8 mm圆管中的流动沸腾的压降关联式,结果表明90%的预测值与实验值的偏差在±15%以内。  相似文献   

5.
综述了近年来多孔泡沫金属强化池沸腾换热的实验研究,从多孔泡沫金属的材料、厚度、孔密度、孔隙率及泡沫金属复合槽道对强化传热性能的影响进行总结,并对多孔泡沫金属强化沸腾换热的研究方向进行展望。  相似文献   

6.
利用实验手段对梯度金属泡沫池沸腾过程中气泡脱离行为特性进行了探究。实验工质为去离子水、浓度分别为400 mg·L~(-1)和800 mg·L~(-1)的正庚醇溶液。梯度金属泡沫材质为铜和镍,铜泡沫层和镍泡沫层厚度均为4 mm,孔密度分别为40 PPI和10 PPI。实验结果表明:添加正庚醇会使池沸腾气泡脱离直径变小,数目减少,但其浓度变化影响不明显;在热通量6.6×10~4 W·m~(-2)沸腾时,观察到气泡脱离金属泡沫骨架阻碍两种常见运动形式:气泡破裂和整体滑移;当热通量增加到1.0×10~5 W·m~(-2)时,相邻的两个气泡在梯度金属泡沫内合并成一个大气泡脱离金属泡沫。  相似文献   

7.
制冷剂/油在泡沫金属加热表面池沸腾换热特性   总被引:1,自引:1,他引:0       下载免费PDF全文
实验研究了制冷剂/润滑油混合物在泡沫金属加热表面核态池沸腾的换热特性,分析了润滑油浓度和泡沫金属结构对池沸腾换热特性的影响。实验使用3种结构参数的泡沫金属作为加热表面,其参数分别为10 ppi/90%孔隙率、10 ppi/95%孔隙率和30 ppi/98%孔隙率,厚度均为5 mm。实验使用的制冷剂为R113,润滑油为VG68,润滑油浓度为0~5%。实验结果表明:泡沫金属的存在极大提高了制冷剂/油混合物的池沸腾传热系数,最多提高1.6倍;润滑油的存在恶化制冷剂在泡沫金属加热表面池沸腾的换热特性,传热系数最多降低相似文献   

8.
池沸腾换热表面的结构对其沸腾换热性能具有重要影响。为了进一步强化在较低表面过热度时池沸腾换热的性能,提出了新型梯形微槽道池沸腾换热表面,采用可视化实验方法研究了饱和温度下去离子水在该表面的池沸腾换热性能。结果表明:与光滑平面相比,梯形微槽道表面可以降低起始沸腾表面过热度;在相同表面过热度时,随着下底长度的增大、下底角角度的减小,梯形微槽道表面的热通量增加,换热能力增强。下底长度为1.2 mm、下底角度为45°的梯形微槽道表面具有最低的起始沸腾表面过热度(1.4 K);在表面过热度为8.3 K时,其热通量能达到1.2×106 W·m-2,为相同表面过热度时光滑表面的24.0倍。较大的下底长度和较小的下底角角度有利于增强梯形微槽道表面的池沸腾换热性能。  相似文献   

9.
研究了制冷剂R134a在角度分别为30°、60°和90°的菱形离散肋微小通道内的流动沸腾换热特性。微小通道内菱形离散肋分布区域长300 mm、宽20 mm,进口处饱和压力为(700±5)kPa,其他工况范围为:干度0~1,质量流率200~500 kg/(m2·s),热通量10~30 k W/m2。实验结果表明:离散肋中的流动沸腾换热受到核态沸腾和对流沸腾的共同作用,传热系数随质量流率和热通量的增加而增加,但随着干度的升高,热通量的作用减弱并趋于消失。此外,离散肋结构对流动沸腾换热有显著影响,相同工况下,90°菱形离散肋的传热系数高于30°和60°,且在高干度更显著。最后,基于实验数据和分析结论,提出了一个适用于预测不同结构离散肋微小通道中流动沸腾传热系数的计算关联式。  相似文献   

10.
泡沫金属具有超大比表面积,应用在除湿领域有很大潜力;保证泡沫金属表面冷凝液滴的及时排出是开发泡沫金属除湿换热器的关键,因此必须明确泡沫金属的排水性能。通过动态浸入实验,研究了3种不同润湿性下泡沫金属结构特性对排水性能的影响。研究结果表明:泡沫金属的孔密度越大,孔隙率越低,重力方向高度越大,排水性越差;疏水改性下5~40PPI泡沫金属的排水性能增强,残余水量减少26%~60%;亲水改性下5~10PPI泡沫金属的排水性能增强,残余水量最多降低23%,但15~40PPI泡沫金属的排水性能减弱,残余水量最多增大13%。  相似文献   

11.
为获取高热流、低流速条件下超临界CO2的传热规律,开展了超临界CO2在内径2 mm水平小圆管内对流传热试验研究,并重点探讨了变物性、浮升力和热加速等效应对传热过程的影响。试验参数范围:系统压力7.6~8.4 MPa,质量流速400~500 kg/(m2?s),热通量0~200 kW/m2,流体温度20~60℃,Reynolds数1.2×104~4.3×104。分别采用Gr/Re 2Kv作为浮升力效应和热加速效应的判别因子。结果显示,在高热流低流速工况下,浮升力效应显著(Gr/Re 2 > 10-3),同一个截面处的上壁面传热系数始终小于下壁面传热系数。浮升力效应是高热流低流速工况下传热恶化的主要诱发因素。试验中热加速因子较小(Kv < 8.5×10-7),其效应可以忽略。将试验数据与典型的传热经验关联式作对比,结果表明Liao-Zhao关联式的计算结果与试验结果最吻合。  相似文献   

12.
通过实验研究,得到不同孔密度的泡沫金属内湿空气的换热和压降特性,并对泡沫金属换热器综合性能进行了分析。测试样件为泡沫铜,孔密度为5~40PPI(pores per inch),孔隙率为95%。研究结果表明,由于凝结水的存在,泡沫金属内的湿空气传热系数随着孔密度的增大先增大后减小,孔密度为15PPI时达到最大值;压降随着孔密度的增大而增大,且大于20 PPI时压降增大更明显。综合考虑传热系数与压降因素,泡沫金属孔密度为15PPI时综合性能最佳。  相似文献   

13.
泡沫金属复合相变材料的制备与性能分析   总被引:4,自引:2,他引:2       下载免费PDF全文
盛强  邢玉明  王泽 《化工学报》2013,64(10):3565-3570
利用泡沫金属多孔结构的吸附性能,以八水氢氧化钡为相变材料,泡沫铜为基体,制备了结晶水合盐/泡沫金属复合相变材料。采用差示扫描量热法测定了八水氢氧化钡的热循环性能,随着热循环次数的增加,相变材料的相变温度基本不变,相变潜热略有减少,八水氢氧化钡具有较好的热稳定性。搭建了相变储能实验台,实验分析了3组不同实验方案,结果表明,填充泡沫铜不仅增强了相变材料的传热速率,而且有效地降低了八水氢氧化钡的过冷度。当泡沫金属使用较大孔密度后,结晶水合盐的过冷问题得到了比较明显的改善。  相似文献   

14.
郑晓欢  纪献兵  王野  徐进良 《化工进展》2016,35(12):3793-3798
为研究超亲/疏水性表面对沸腾传热的影响,用H2O2氧化的方式制备了超亲水表面,用氨水加高分子修饰的方式制备了超疏水表面。在常压下以蒸馏水为工质,采用高速摄影仪对其进行了池沸腾传热实验。结果表明,超疏水表面亲气疏水,在沸腾起始点易于产生气泡,且气泡不易脱离,此时壁面过热度ΔTs仅为2.4K,但随热流密度的增大,气泡易于聚合,所产生的大气泡阻碍了传热的进行,传热开始恶化,临界热流密度(CHF)较低;而H2O2氧化的表面由于刀片状微纳结构的存在,增加了表面的粗糙度,不仅增大了相变传热表面积、增加了核化点数量,而且具有超亲水特性,气泡脱离频率较大,大大强化了沸腾传热,最大换热系数约是光表面的1.7倍,且相应地提高了CHF,可达131.0W/cm2,表现出较好的传热特性。  相似文献   

15.
杨振  姚元鹏  吴慧英 《化工学报》2021,72(3):1295-1301
通过理论分析引入用于定向计算泡沫金属等效热导率的导热形状因子(m),并基于文献报道的大量实验数据对m进行了计算和分析。研究发现,m随泡沫金属材质、孔隙率及孔密度变化呈显著随机波动现象,无固定趋势或规律可循;泡沫金属等效热导率的准确预测需纳入多孔泡沫结构定向形变效应影响。鉴于此,通过直接数值模拟获得了m随孔胞形变参数(即沿泡沫金属宏观传热方向与其垂直方向的胞径比)变化的无量纲准则关联式,进而提出了基于m定向预测泡沫金属等效热导率的新方法。对比文献报道实验数据及基于各向同性结构假设的理论模型预测结果发现,上述方法可提高等效热导率的预测精度(平均偏差为0.77%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号