首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了温度对水泥-矿渣复合胶凝材料硬化浆体微观结构及净浆和砂浆后期强度的影响。利用背散射图像分析法测定了硬化浆体中水泥和矿渣各自的反应程度。探讨了水泥-矿渣复合胶凝材料水化程度、微观结构和力学性能之间的关系。结果表明:温度对纯水泥的水化程度影响很小,但高温(60℃)降低了纯水泥净浆的后期抗压强度。高温阻碍了复合胶凝材料浆体中水泥的后期水化,但促进了矿渣的水化,提高了矿渣的后期反应程度。高温下矿渣持续反应使硬化浆体的孔结构细化,使复合胶凝材料净浆的后期抗压强度与常温养护时相近。高温对水泥-矿渣复合胶凝材料砂浆后期抗压强度的不利影响大于净浆后期抗压强度。高温养护并不导致水泥-矿渣复合胶凝材料的后期水化程度降低。复合胶凝材料的水化程度与强度不呈线性相关。  相似文献   

2.
矿渣具有潜在活性,可用于制备不同类型的水泥.介绍了矿渣的形成与材料特性,在此基础上,将其用于矿渣硅酸盐水泥、超硫酸盐水泥及碱激发矿渣水泥,并分析其在不同胶凝体系中的水化特性.在三种胶凝体系中,矿渣在碱和硫酸盐激发下,形成大量水化硅酸钙和钙矾石等水化产物;随着水化反应的不断发展,使得硬化浆体更加致密,进而提高水泥的强度.  相似文献   

3.
定量确定复合胶凝材料中的水泥与矿物掺合料的反应程度对于研究它们的反应机理和微观结构发展非常重要。采用扫描电镜观察结合能谱分析,确定了在20、45和60℃水化的复合胶凝材料中的水泥、矿渣粉或粉煤灰的反应程度。用灼烧失重法测定了复合胶凝材料浆体的非蒸发水量。结果表明:水化温度对于水泥的水化程度影响很小。在实验温度范围内,水泥-矿渣粉复合胶凝材料中的水泥的反应程度随着矿渣粉含量的增加而提高;但是水泥-粉煤灰复合胶凝材料中的水泥的反应程度在高温时低于纯水泥的反应程度。水化温度的提高降低了水泥的反应程度,但提高了矿渣粉或粉煤灰的反应程度。复合胶凝材料的反应程度随着矿物掺合料掺加比例的提高而降低。复合胶凝材料的反应程度与其非蒸发水量之间存在线性关系。  相似文献   

4.
水泥-矿渣复合胶凝材料硬化浆体的微观结构   总被引:1,自引:0,他引:1  
利用压汞法、扫描电子显微镜和透射电子显微镜研究了两种不同养护条件下水泥-矿渣复合胶凝材料硬化浆体的微观结构.结果表明:常温养护3d龄期时,随着矿渣的掺入和掺量的增加,硬化浆体的孔隙率越大,大孔含量越多;硬化浆体微观形貌显示,掺矿渣试样的反应程度比纯水泥试样更低,密实程度较差.水化后期,复合胶凝材料的水化程度虽然比纯水泥试样低,但复合试样的孔隙率更低,孔径细化.纯水泥试样中水化硅酸钙(C-S-H)凝胶的微观形貌呈单向分布的纤维状,而复合胶凝材料试样中矿渣反应生成的C-S-H凝胶呈三维分布的箔片状,能更有效的隔断和填充连通的孔隙.在高温养护条件下,掺矿渣复合胶凝材料硬化浆体早期和后期孔隙率均较低,高温激发了矿渣早期的活性.  相似文献   

5.
利用压汞法、扫描电子显微镜和透射电子显微镜研究了两种不同养护条件下水泥-矿渣复合胶凝材料硬化浆体的微观结构。结果表明:常温养护3 d龄期时,随着矿渣的掺入和掺量的增加,硬化浆体的孔隙率越大,大孔含量越多;硬化浆体微观形貌显示,掺矿渣试样的反应程度比纯水泥试样更低,密实程度较差。水化后期,复合胶凝材料的水化程度虽然比纯水泥试样低,但复合试样的孔隙率更低,孔径细化。纯水泥试样中水化硅酸钙(C-S-H)凝胶的微观形貌呈单向分布的纤维状,而复合胶凝材料试样中矿渣反应生成的C-S-H凝胶呈三维分布的箔片状,能更有效的隔断和填充连通的孔隙。在高温养护条件下,掺矿渣复合胶凝材料硬化浆体早期和后期孔隙率均较低,高温激发了矿渣早期的活性。  相似文献   

6.
在分析水泥熟料与辅助性胶凝材料水化程度、填充能力和强度贡献率的基础上,提出了水泥熟料与辅助性胶凝材料优化匹配原则。利用该原则,可在降低水泥熟料用量、提高辅助性胶凝材料(特别是低活性辅助性胶凝材料)掺量的同时,显著改善复合水泥的强度、体积稳定性等性能,实现水泥熟料、矿渣等胶凝材料的高效利用。  相似文献   

7.
本文针对水泥-粉煤灰-矿渣粉复合胶凝体系配制的干混砂浆早期和后期强度较低的难题,选取粉煤灰、矿渣粉两者单掺或复掺取代水泥率为70%的复合胶凝体系,研究脱硫石膏(FGD)对该体系活性的改进效果.结果表明:掺加一定量的FGD对水泥-粉煤灰-矿渣粉复合胶凝体系活性的改进效果明显,能明显提高该体系的早期和后期抗压强度和拉伸粘结强度,且能使胶凝体系的收缩降低10%以上;通过XRD和SEM、孔结构微观分析表明:FGD对粉煤灰或矿渣粉起到了硫酸盐和碱性激发的双重作用,且对水泥水化也有一定的促进作用,胶凝体系水化产物改善了浆体内部结构,使浆体中空隙大大降低.  相似文献   

8.
为提高粉煤灰-矿渣-水泥充填胶凝体系早期强度,选取10种激发剂,通过单掺及复掺试验,研究激发剂的早强性能,并获得最优配比,利用XRD、SEM、EDS手段分析了胶凝体系的水化产物及复合激发剂作用机理.结果表明:单掺激发剂时,当掺量≤1.4%,早强效果较优的依次为:NaCl>Na2 CO3>CaSO4·2H2 O>Na2 SiO3·9H2 O>三乙醇胺,复掺激发剂最佳配比为:NaCl、三乙醇胺分别为胶凝材料总质量0.9%和0.03%,硫铝酸盐水泥、CaSO4·2H2 O均为水泥熟料质量5%,胶砂试样3 d强度比空白样提高191.7%,28 d强度与空白样相差不大;胶凝体系受激发主要水化产物为C-S-H凝胶、水化氯铝酸钙和钙矾石,C-S-H凝胶构成了试样的强度主体,针状钙矾石与片状水化氯铝酸钙交错生长,具有加筋、填充作用,使微观结构更加密实、紧凑,提高了早期强度.  相似文献   

9.
水泥—钢渣—矿渣复合胶凝材料的水化特性   总被引:3,自引:0,他引:3  
通过测定水泥--钢渣--矿渣复合胶凝材料的水化热、砂浆的抗压强度、硬化浆体孔溶液的碱度、钢渣和矿渣的水化程度,探讨了复合胶凝材料的水化特性。结果表明:钢渣在复合胶凝材料水化硬化过程中所起的化学作用小于矿渣;随着复合胶凝材料中钢渣含量的增大和矿渣含量的减小,复合胶凝材料的早期和后期胶凝性能均降低;随着复合胶凝材料中矿渣的含量增大,硬化浆体孔溶液的碱度降低,矿渣的反应程度也随之降低,矿渣含量为10%~40%时,孔溶液的pH值为12.6~13.3;钢渣的反应程度受复合胶凝材料组成的影响很小;钢渣和矿渣在后期的反应程度提高明显,尤其矿渣所起的化学作用显著,矿渣在360d龄期的反应程度超过50%,甚至60%,使复合胶凝材料砂浆的后期强度与水泥砂浆的差距明显缩小。  相似文献   

10.
脱硫石膏和粉煤灰按比例混合后可复合制成一种新型活性胶凝材料,采用SEM和XRD两种微观试验方法,对复合胶凝体系在不同龄期内的水化过程和水化产物形貌进行观察和分析。试验结果表明:脱硫石膏的加入对粉煤灰活性具有较强的激发作用,粉煤灰-脱硫石膏-水泥三元复合胶凝材料体系的水化反应更为剧烈,水化产物更加丰富,早期强度得到提升。  相似文献   

11.
本文研究了水化热抑制剂(TRI)对水泥-粉煤灰-矿渣复合胶凝材料早期水化过程。通过改变矿物掺合料在胶凝材料中的质量占比以及TRI的掺量,研究了胶凝材料的水化特性,并基于Krstulovic-Dabic水化动力学模型计算了反应速率常数、几何晶体生长指数等动力学参数。结果表明,矿物掺合料和TRI复合使用会延缓胶凝材料水化并降低最大放热速率;复合胶凝材料的水化过程均有结晶成核与晶体生长、相边界反应以及扩散3个阶段,Krstulovic-Dabic水化动力学模型能较好地模拟各复合胶凝材料的水化过程;矿物掺合料和TRI会影响复合胶凝材料水化产物的结晶成核以及晶体生长,并降低复合胶凝材料各阶段的水化速率。  相似文献   

12.
发展低熟料高标号胶凝材料是水泥工业碳达峰目标达成的有效途径之一,但对水泥混合材特性利用及多种混合材协同作用也提出了更高要求。本文以四川地区工业固废硅锰渣和地域资源丰富的石灰石为主要混合材,配制了熟料-硅锰渣-石灰石复合胶凝材料,研究了复合胶凝材料性能及水化特性。研究结果表明,熟料-硅锰渣-石灰石复合胶凝材料工作性良好,后期力学性能增强,且石灰石粉的成核诱导水化效应可有效改善单独使用硅锰渣胶凝材料体系凝结时间延长和早期强度过低问题。复合胶凝材料体系中,石灰石粉的早期成核诱导水化效应和硅锰渣后期水化活性均能得到充分发挥。此外,硅锰渣和石灰石粉能够协同参与胶凝材料体系水化,消耗铝相生成水化碳铝酸盐相,增加水化产物总量,同时也能阻止AFt向AFm转变,有利于体系力学性能稳定提升。  相似文献   

13.
为探究矿渣、粉煤灰及电石渣的资源化利用,以电石渣作为碱激发剂,研究了矿渣-粉煤灰复合胶凝材料的水化产物组成及强度特征。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、热重-差示扫描热(TG-DSC)、扫描电子显微镜及能谱(SEM-EDS)等微观测试技术,分析了复合胶凝材料的晶体结构、热化学性质以及微观形貌等特性,研究了电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制。结果表明:电石渣作为碱激发剂时能为矿渣-粉煤灰复合胶凝材料提供初始水化所需要的强碱环境,驱动矿渣和粉煤灰发生水化反应。随着矿渣掺量的增加,复合胶凝材料的强度发展呈先增加后减小的变化趋势,在粉煤灰与矿渣掺量质量配比为4∶6、外掺电石渣质量分数为4%时,复合材料浆体经4 d常温养护+32 h高温蒸汽养护后抗压强度达到25.9 MPa;矿渣-粉煤灰复合胶凝体系中水化产物分布不均,主要组成为水化硅酸钙、水化铝酸钙、水化硅铝酸钙等凝胶。电石渣作为矿渣-粉煤灰体系的碱激发剂使用时效果良好。  相似文献   

14.
石灰对矿渣胶凝材料强度的影响   总被引:3,自引:0,他引:3  
以矿渣的碱激发和硫酸盐激发为理论依据,研究了石灰及石灰复合激发剂对矿渣胶凝材料强度的影响,并讨论了矿渣胶凝材料强度形成的机理.实验结果表明无论是生石灰或消石灰单独激发,还是消石灰和烧石膏、消石灰和烧石膏熟料复合激发,均可获得较高的抗折强度;单独用石灰或消石灰激发,抗压强度仅达到普通22.5水泥(P·O22.5)标准,用消石灰、熟料和烧石膏复合激发可获得较高的抗压强度.  相似文献   

15.
对水泥、矿渣、粉煤灰分别粉磨复配制成复合胶凝材料,并与硅酸盐水泥进行水化热、水化性能、抗硫酸盐性能的对比研究.结果证实:复合胶凝材料的水化热较低,抗硫酸盐性能好,耐久性好:而且生产复合胶凝材料对降低水泥产品环境负荷具有良好的效果.  相似文献   

16.
水泥中掺入大量矿物掺合料易造成其早期强度低、施工周期长等问题。本文研究了C-S-H晶核对含矿物掺合料的复合胶凝材料体系水化性能的影响规律;通过热力学计算阐述了C-S-H晶核降低水化产物成核势垒的机理,并通过离子溶出与沉积探讨大掺量矿物掺合料胶凝体系水化机理。结果表明:矿物掺合料复合胶凝材料体系水化能力较弱,这是由于Ca2+溶出受到制约,C3S的水化反应缓慢;当加入晶核后,水泥中硅酸盐相溶解-结晶能力得到大幅提升,使得矿物掺合料水泥体系的水化反应活性接近纯水泥体系。研究表明,C-S-H晶核可解决大掺量矿物掺合料胶凝体系所带来的水化能力严重不足问题。  相似文献   

17.
为了研究超细磷渣粉对水泥性能的影响,测试了普通磷渣,4 μm、2μm超细磷渣-水泥复合胶凝材料的标准稠度用水量、凝结时间、水化热、胶砂抗压强度.结果 表明:与纯水泥相比,超细磷渣掺入使复合胶凝材料标准稠度用水量增大5.6%~12.6%,凝结时间延长;普通磷渣-水泥复合胶凝材料相比于纯水泥水化速率缓慢,第二水化放热峰时间延迟8.26h;超细磷渣-水泥复合胶凝材料相比于普通磷渣-水泥复合胶凝材料水化放热速率增大,第二水化放热峰提前5.5h,超细磷渣-水泥复合胶凝材料120 h水化放热总量接近纯水泥;超细磷渣-水泥复合胶凝材料3d、7d抗压强度与水泥胶砂强度持平,28 d抗压强度超过水泥胶砂强度.超细化处置可增强磷渣的活性,促进磷渣本身的火山灰反应,提高水泥基材料性能,对实现磷渣的资源化利用具有重要意义.  相似文献   

18.
王宁  王晴  张凯峰  姚源  邓天明 《硅酸盐通报》2015,34(7):2047-2051
研究了低温下矿渣-水泥复合胶凝体系的水化反应特性和水化反应动力学.研究表明:低温下,复合胶凝体系的水化放热速率随着矿渣掺量的增加和环境温度的降低而下降;非蒸发水含量随着矿渣掺量的增加呈现降低的趋势;对已有水泥水化动力学方程进行计算,得到了低温条件下复合胶凝体系的动力学参数以及不同阶段反应速率和水化度间的关系,通过计算获得的动力学参数,可以对低温条件下复合胶凝体系不同反应阶段水化反应程度进行预测;在水化早期,复合胶凝体系中矿渣水化程度较低,消耗少量Ca(OH)2,使生成C-S-H凝胶的Ca/Si降低较少.在水化后期,复合胶凝体系中矿渣水化消耗较多的Ca(OH)2,使生成C-S-H凝胶的Ca/Si降低较多.矿渣掺量为50%时,硬化浆体C-S-H凝胶的Ca/Si远小于纯水泥体系.  相似文献   

19.
聚合物/水泥复合胶凝材料在解决普通水泥基材料脆性大、易开裂、抗拉抗折强度低等问题的同时还可使水泥基材料具有了更好的防水性和耐久性,但聚合物/水泥复合胶凝材料凝结硬化较为缓慢。针对此,采用稻壳灰作为调凝组分,研究稻壳灰对丁苯聚合物/水泥复合胶凝材料凝结硬化过程以及水化进程和水化产物的影响,探讨稻壳灰调节凝结硬化过程的机理。结果表明:稻壳灰能加快丁苯聚合物/水泥复合胶凝材料的水化进程,缩短水化诱导期、加速期,并提高早期水化程度,从而缩短凝结时间,提高早期强度。凝结硬化过程中,稻壳灰促进了C_3S的水化,并与部分水化产物Ca(OH)_2发生二次反应生成C–S–H凝胶。  相似文献   

20.
袁波  汪恒昆  陈伟  唐佩 《硅酸盐通报》2022,41(5):1696-1703
碳酸盐激发胶凝材料具有低环境影响、易操作、良好材料性能等特点,但也存在抗压强度发展慢等问题,限制其在实际工程中的应用。本研究以层状双氢氧化物(LDHs)为关键改性材料,探究LDHs掺入后碳酸钠激发矿渣的早期性能,结合等温量热法、XRD、TG-DTG、SEM和压汞仪(MIP)等材料表征测试方法,系统分析LDHs对碳酸盐激发胶凝材料水化反应及产物的影响规律。研究结果发现,随着LDHs掺量的增加,碳酸钠激发矿渣早期水化反应速率显著提升。LDHs可作为纳米晶核位点促进水滑石和C-S-H凝胶生长,加快碳酸盐激发胶凝材料早期主要水化产物的生成。水化早期试样孔隙结构得到改善,其1 d抗压强度最高可达22 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号