首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以脱钠赤泥、粉状褐煤为原料,羧甲基纤维素钠为黏结剂,采用碳热还原法制备了可替代商业铁炭微电解填料的廉价铁炭材料,用于去除废水中的Cr(Ⅵ)。考察了不同的制备参数(炭化温度、炭化时间、赤泥/煤质量比)和吸附条件(溶液pH、浓度),以提升Cr(Ⅵ)去除效果。结果表明质量比(赤泥/煤)为1/3、800℃炭化1h的赤泥/煤基铁炭材料,可达到最大Cr(Ⅵ)吸附量(4.03 mg·g-1)、最低铁溶出量(< 0.19 mg·g-1)和最大比吸附量(12.97 mg·g-1,由Langmuir吸附等温线模型算出)。赤泥/煤基铁炭材料对Cr (Ⅵ)的吸附等温线符合Freundlich方程,其吸附动力学可用准一级或准二级动力学方程来描述。多种表征(XRD、XRF、BET和SEM等)结果进一步表明赤泥/煤基铁炭材料比商业铁炭填料具有更高的铁还原度、更大的比表面积和孔容以及更好的颗粒分散度,使其具有更好的Cr(Ⅵ)的去除效果。  相似文献   

2.
周春地  阳婷  闵熙泽  韩彩芸 《化工进展》2020,39(10):4275-4282
针对纳米零价铁(nanoscale zero valent iron,nZVI)易团聚的特性,本文用鸡骨生物炭(BC)作载体,制备出生物炭-零价铁(Fe-BC)去除Cr(Ⅵ),并与铜改性的生物炭-零价铁(Fe-Cu-BC)和BC对Cr(Ⅵ)的吸附性能进行了对比。通过扫描电镜(SEM)和能谱仪(EDS)、X射线衍射(XRD)、N2吸脱附等温线和傅里叶红外光谱(FTIR)对材料表面形貌及结构性质进行分析,同时考察了溶液pH、接触时间等条件对吸附剂吸附容量的影响,通过吸附动力学和吸附等温线分析了吸附特性。结果表明,在pH=2的条件下去除Cr(Ⅵ)效果较好;吸附平衡遵从Langmuir吸附等温式;吸附动力学符合准二级动力学方程。Fe-BC材料吸附水体污染物后可用磁分离技术加以回收。Fe-Cu-BC缩短了对Cr(Ⅵ)的吸附平衡时间。制备出的吸附剂对Cr(Ⅵ)的理论最大吸附量顺序为 Fe-BC>Fe-Cu-BC>BC;同时, Fe-BC吸附量为153.60mg/g,对比于先前报道的nZVI对Cr(Ⅵ)的吸附容量85mg/g左右,有了很大的提升,说明BC作载体成功解决了nZVI易团聚的缺点,拓展了实际应用。  相似文献   

3.
以甘蔗渣为原料,通过高温限氧和氧化钙改性制备钙改性甘蔗渣活性炭。研究了钙改性甘蔗渣活性炭对Cr(Ⅵ)吸附的影响因素,并通过吸附等温线模型和吸附动力学,进一步讨论其吸附机理。由实验数据可知,氧化钙改性有利于提高甘蔗渣炭对Cr(Ⅵ)的吸附效果。改性后,甘蔗渣活性炭的最佳吸附条件为:pH=2,吸附时间8h,吸附剂添加量为0.2 g,Cr(Ⅵ)的吸附浓度为20 mg·L~(-1),此时吸附容量达到2.89 mg·g~(-1)。吸附等温模型的拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附符合Freundlich吸附等温模型。吸附动力学模型拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附可用Lagergren准二级动力学模型表示,吸附过程存在物理扩散和化学吸附。  相似文献   

4.
以废印刷线路板非金属粉末为碳源,KOH为活化剂,采用预处理-炭化-活化三步法制备了多孔炭材料(PBT-S),并研究了其对Cr(Ⅵ)的吸附性能。孔径分布和N_2吸附脱附等温线结果表明PBT-S具有微孔、介孔混合型的多级孔特征,比表面积为2796. 95 m~2/g,总孔容为1. 56 cc/g。在此基础上研究了其对Cr(Ⅵ)的吸附性能,实验结果表明,在pH为2、初始浓度为100 mg/L,投加量为20 mg条件下Cr(Ⅵ)吸附量可达234 mg/g,吸附动力学符合准二级动力学模型,等温吸附拟合更接近于Langmuir吸附等温线模型。  相似文献   

5.
以富含铁的铜渣(CS)为原料,在碱激发条件下制备了铜渣基化学键合陶瓷材料(CSCBC),对废水中的Cr(Ⅵ)进行吸附处理。考察了吸附剂添加量、Cr(Ⅵ)初始浓度及pH等因素对Cr(Ⅵ)吸附效果的影响,并通过吸附动力学和热力学分析,结合吸附前后吸附材料结构表征,对其吸附机理进行了探讨。结果表明,当Cr(Ⅵ)初始质量浓度为200 mg/L、pH=1、吸附剂投加量为0.4 g时,在240 min内达吸附平衡,Cr(Ⅵ)去除率可达93%以上,最大理论吸附容量25.3 mg/g。与生物炭基铁氧化物复合材料、FeS复合材料、铁掺杂吸附剂等同类型吸附剂相比,Cr(Ⅵ)吸附容量明显提高。CSCBC对Cr(Ⅵ)的吸附过程符合准一级动力学模型和Langmuir等温吸附模型。其吸附机制主要是还原、吸附等双重作用的结果。 6次吸附-解吸实验后,其吸附容量保持初次吸附容量的75%以上 。  相似文献   

6.
以富含铁的铜渣(CS)为原料,在碱激发条件下制备了铜渣基化学键合陶瓷材料(CSCBC),对废水中的Cr(Ⅵ)进行吸附处理。考察了吸附剂添加量、Cr(Ⅵ)初始浓度及pH等因素对Cr(Ⅵ)吸附效果的影响,并通过吸附动力学和热力学分析,结合吸附前后吸附材料结构表征,对其吸附机理进行了探讨。结果表明,当Cr(Ⅵ)初始质量浓度为200 mg/L、pH=1、吸附剂投加量为0.4 g时,在240 min内达吸附平衡,Cr(Ⅵ)去除率可达93%以上,最大理论吸附容量25.3 mg/g。与生物炭基铁氧化物复合材料、FeS复合材料、铁掺杂吸附剂等同类型吸附剂相比,Cr(Ⅵ)吸附容量明显提高。CSCBC对Cr(Ⅵ)的吸附过程符合准一级动力学模型和Langmuir等温吸附模型。其吸附机制主要是还原、吸附等双重作用的结果。 6次吸附-解吸实验后,其吸附容量保持初次吸附容量的75%以上 。  相似文献   

7.
以富含铁的铜渣(CS)为原料,在碱激发条件下制备了铜渣基化学键合陶瓷材料(CSCBC),将其用于废水中Cr(Ⅵ)的吸附。考察了吸附剂投加量、Cr(Ⅵ)初始质量浓度及溶液pH对Cr(Ⅵ)吸附率的影响。通过吸附动力学和热力学分析,结合吸附前后吸附材料结构表征,对其吸附机理进行了探讨。结果表明,当Cr(Ⅵ)初始质量浓度为100 mg/L、pH=1、吸附剂投加量为8 g/L时,在120 min内达吸附平衡,Cr(Ⅵ)吸附率在99%以上。Langmuir等温吸附模型计算所得最大理论吸附容量为25.3 mg/g。与生物炭基铁氧化物复合材料、FeS复合材料、铁掺杂吸附剂等同类型吸附剂相比,CSCBC对Cr(Ⅵ)的吸附容量明显提高。CSCBC对Cr(Ⅵ)的吸附过程符合准一级动力学模型和Langmuir等温吸附模型。其吸附机制主要是物理吸附和化学吸附同时作用的结果。6次吸附-解吸后,其吸附容量保持初次吸附容量的75%以上。  相似文献   

8.
采用加热蒸发法制备了载铁氧化石墨烯壳聚糖(Fe-GOCS)复合球,对合成材料进行了表征,研究其对吸附Cr(Ⅵ)的影响因素。结果表明,随pH的降低,Fe-GOCS对Cr(Ⅵ)的吸附量增加。准1级动力学模型可用于描述0~10 h对Cr(Ⅵ)的吸附动力学过程,而10~45 h阶段对Cr(Ⅵ)的吸附符合准2级动力学方程。随环境温度的升高,FeGOCS对Cr(Ⅵ)吸附容量变大,吸附过程为自发的吸热反应,并符合Sips和Langmuir吸附等温线模型,对Cr(Ⅵ)的最大吸附量可达141.5 mg/g。材料经过5次吸附-解吸附后,对Cr(Ⅵ)的平衡吸附容量仍有77.2 mg/g。傅立叶红外光谱和X射线衍射仪证明Fe-GOCS上的-NH——2和负载的铁氧化物参与了Cr(VI)的吸附。  相似文献   

9.
以铁精粉、煤粉与造纸污泥为原料,采用直接还原法制备多孔铁炭微电解填料,对其进行了表征,考察了铁炭填料对Pb2+的吸附特性,并与活性炭的吸附性能作了比较. 结果表明,铁炭填料孔隙率为32.3%~52.9%,金属铁含量达50%以上,铁炭质量比可调. 吸附Pb2+的最佳铁炭质量比为6.8:1, pH=3时铁炭填料对Pb2+的吸附量最大;吸附速度快,符合准二级吸附动力学模型,等温吸附过程可用Langmuir等温吸附模型描述;铁炭填料和活性炭对Pb2+的最大吸附量分别为112.36和27.94 mg/g,铁炭填料吸附Pb2+的性能远高于活性炭.  相似文献   

10.
以核桃壳为前体采用水热炭化法制备水热炭,利用低温液氮物理吸附仪和傅里叶变换红外光谱仪测定水热炭的孔结构和表面官能团;实验研究其对液相中Cr(Ⅵ)的吸附特性,考察吸附剂加入量、Cr(Ⅵ)初始浓度、pH值、吸附时间等因素对吸附效果的影响。结果表明,水热炭的孔径分布范围较宽,表面含氧官能团丰富,能够很好地吸附溶液中的六价铬;溶液pH值对Cr(Ⅵ)的脱除影响很大,pH值呈酸性时吸附效果较好,pH值为2时脱除率达98.85%.当反应温度35℃、Cr(Ⅵ)初始浓度50mg/L、水热炭投加量为16g/L、pH值为6、吸附时间为100min时,Cr(Ⅵ)离子的去除率可达98%以上。核桃壳水热炭对Cr(Ⅵ)具有良好的吸附能力,吸附过程符合准二级吸附动力学模型,可用Freundlich吸附等温模型来描述,吸附等温线的线性相关性显著。  相似文献   

11.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH 4.0,生物炭浓度20 g/L,Cr(Ⅵ)初始浓度在50~800 mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20 mg/L)后,拟合得到的理论饱和吸附量达10.10 mg/g,较未加入腐殖酸的吸附量5.56 mg/g提高近1倍。在pH 2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。腐殖酸浓度上升,生物炭吸附能力进一步提高。红外光谱显示,生物炭表面的羟基、羧基、酯基、芳香环上C-H和环状结构上的C-C等化学活性官能团与Cr(Ⅵ)的吸附有关。结合XPS分析结果,推断腐殖酸共存促进生物炭吸附的机制是:腐殖酸提高了Cr(Ⅵ)在生物炭表面聚集浓度,有利于生物炭对Cr(Ⅵ)的直接吸附和还原,而腐殖酸本身具有的吸附能力增加了对溶液中Cr(Ⅵ)和Cr(Ⅲ)的去除。  相似文献   

12.
以稻秸秆提取腐植酸残渣(ER)与工业尾矿渣(TR)为原料进行共热解制备出一种生物炭,并将其应用于含Cr(Ⅵ)废水的吸附。对主要热解及吸附因素进行了分析,并对吸附机理进行了初步探究。结果表明,生物炭的最佳热解及吸附条件为700℃、ER∶TR=2∶1、投加量为1 g/L、pH=2。在此条件下,当Cr(Ⅵ)初始浓度<30 mg/L,Cr(Ⅵ)去除率在5 min时即可达99%。生物炭的吸附过程符合Langmuir等温线方程,饱和吸附量为27.05 mg/g;准二级动力学方程能更好地反映生物炭的吸附过程,吸附以化学吸附为主。Cr(Ⅵ)首先在静电作用下吸附在生物炭表面,然后Cr(Ⅵ)在生物炭表面被单质碳或溶液中的H+还原为Cr(Ⅲ),最后Cr(Ⅲ)在生物炭表面与官能团络合。  相似文献   

13.
选用樱花为原料制备新型生物质炭,应用其吸附含Cr(Ⅵ)的模拟废水,用单因素静态实验对影响吸附的5个主要因素(吸附剂投加量、pH值、Cr(Ⅵ)初始浓度、反应温度和吸附时间)进行分析,并结合吸附过程的动力学特征以及特性表征,对吸附机理进行了初步探究。结果表明,樱花生物炭含有较多中孔,表面官能团如酮基、羧基和C=C能作为电子供体将Cr(Ⅵ)还原为Cr(Ⅲ);樱花生物炭的最佳吸附条件为樱花炭投加量为1 g/L,pH=2,Cr(Ⅵ)浓度为50 mg/L,吸附时间为4 h,反应温度为25℃,在此条件下,吸附量为49.52 mg/g;拟合系数表明准二级动力学方程能更好地反映樱花炭的吸附过程,说明以化学吸附为主;樱花炭的吸附过程更符合Langmuir等温线方程,说明其是单层吸附,最大吸附量为49.78 mg/g;可见,樱花炭在吸附Cr(Ⅵ)方面有一定的发展前景。  相似文献   

14.
为开发廉价高效去除水中重金属Cr(Ⅵ)污染的生物吸附剂,在以沉水植物菹草固形物作为吸附剂研究的基础上,对菹草进行改性以提高吸附性能,并以其为吸附剂进行吸附实验。改性菹草对Cr(Ⅵ)的去除率最高为99.6%,其对Cr(Ⅵ)的吸附动力学符合准二级动力学方程,吸附等温线符合Langmuir吸附等温线,最大吸附量可达64.5 mg/g,与未改性的菹草相比,最大吸附量提高了84.3%。  相似文献   

15.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH4.0,生物炭浓度20g/L,Cr(Ⅵ)初始浓度在50~800mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20mg/L)后,拟合得到的理论饱和吸附量达10.10mg/g,较未加入腐殖酸的吸附量5.56mg/g提高近1倍。在pH2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。  相似文献   

16.
赵红建  赵文霞  张卓  马富 《应用化工》2019,(6):1283-1286
以农业废弃物荞麦壳与硫酸亚铁为原料,通过原位炭化还原法一步制备复合多孔炭材料。采用XRD、SEM等表征手段,考察了所得材料的物化性能。考察硫酸亚铁浓度、炭化温度和Cr(Ⅵ)水溶液pH值对Cr(Ⅵ)去除性能的影响。结果表明,制备的样品为负载FeS/Fe_2O_3/Fe_3O_4的无定形多孔炭。样品在pH=2时表现出优良的Cr(Ⅵ)去除性能;在相同pH值的Cr (Ⅵ)溶液中,浸渍荞麦壳粉的FeSO_4浓度越高、样品焙烧温度越高,所得FeS/Fe_2O_3/Fe_3O_4荞麦壳基多孔炭对Cr(Ⅵ)去除量越大。  相似文献   

17.
《应用化工》2022,(6):1283-1286
以农业废弃物荞麦壳与硫酸亚铁为原料,通过原位炭化还原法一步制备复合多孔炭材料。采用XRD、SEM等表征手段,考察了所得材料的物化性能。考察硫酸亚铁浓度、炭化温度和Cr(Ⅵ)水溶液pH值对Cr(Ⅵ)去除性能的影响。结果表明,制备的样品为负载FeS/Fe_2O_3/Fe_3O_4的无定形多孔炭。样品在pH=2时表现出优良的Cr(Ⅵ)去除性能;在相同pH值的Cr (Ⅵ)溶液中,浸渍荞麦壳粉的FeSO_4浓度越高、样品焙烧温度越高,所得FeS/Fe_2O_3/Fe_3O_4荞麦壳基多孔炭对Cr(Ⅵ)去除量越大。  相似文献   

18.
以甘蔗渣(OB)为原料,先在空气氛围下高温炭化制得甘蔗渣炭(CB),再经草酸改性制得草酸改性甘蔗渣炭(COB),采用SEM、FT-IR和氮气吸附-脱附等温线对3种样品进行表征,并考察了OB、CB和COB对模拟废水中的Cr(Ⅵ)的吸附效果。结果显示:3种样品比表面积大小为COB>CB>OB,其中COB的比表面积为240.67 m2/g,总孔容为0.138 cm3/g,平均孔径为2.30 nm;CB以及COB较OB的孔隙结构更发达、含氧官能团种类及数量明显增加,吸附能力提高。吸附实验结果表明:对Cr(Ⅵ)的吸附量表现为COB>CB>OB,在pH值1、投加量0.6 g、吸附时间100 min、吸附温度25℃和Cr(Ⅵ)质量浓度50 mg/L条件下COB对Cr(Ⅵ)的去除率为99.1%。吸附热力学及动力学结果显示:Langmuir等温吸附模型能更好地反映吸附过程,吸附过程遵循准二级动力学模型,表明甘蔗渣炭对Cr(Ⅵ)的吸附主要为化学吸附的单分子层吸附。  相似文献   

19.
以高炉渣为原料,通过酸浸取-除铁-共沉淀工艺制备了类水滑石介孔材料Ca-Mg-A1/LDH,并对其进行了表征,考察了对水中Cr(Ⅵ)的去除性能。结果表明,Ca-Mg-A1/LDH具有良好的结晶度,比表面积达87.98 m2/g。在30℃、初始Cr(Ⅵ)的质量浓度为20 mg/L、初始pH为2、吸附剂用量1 g/L的静态吸附条件下,Ca-Mg-A1/LDH对Cr(Ⅵ)吸附量为19.0 mg/g,Cr(Ⅵ)去除率为95.0%。Ca-Mg-A1/LDH对Cr(Ⅵ)的吸附过程更符合准2级动力学方程,属于Langmuir单分子层吸附。Ca-Mg-A1/LDH对模拟工业废水中Ni(Ⅱ)、Cu(Ⅱ)、Cr(Ⅵ)的吸附容量分别可达14.0、19.2、23.0mg/g,且吸附过程同时符合Thomos模型和Yoon-Nelson模型。  相似文献   

20.
采用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)及BET方法对在硫酸中水热炭化前后的甘蔗渣进行了表征。结果显示,炭化后的甘蔗渣为骨状结构,表面有大量整齐排列的孔隙,比表面积大大增加,且化学结构与炭化前相比发生了改变。采用14 g/L甘蔗渣水热炭处理含50 mg/L Cr(Ⅵ)的模拟废水时,在温度35℃和pH=2的条件下反应90 min,Cr(Ⅵ)的去除率为99.8%,最大Cr(Ⅵ)吸附量为3.871 mg/g。Langmuir等温吸附模型和拟二级动力学方程能很好地反映吸附过程。采用该甘蔗渣水热炭,只要12 g/L就能令含总铬25.09 mg/L、Cr(Ⅵ)20.07 mg/L、Zn~(2+)1.88 mg/L、Ni~(2+)1.14 mg/L和Cu~(2+)1.68 mg/L的实际电镀废水达到GB 21900–2008《电镀污染物排放标准》的"表3"要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号