首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对乙酸酯化法生产乙酸乙酯分离过程复杂、能耗大的缺点,提出了一种带侧线反应精馏-渗透汽化(RD-PV)集成过程。通过反应精馏塔侧线采出和渗透汽化膜组件及时移出水分,促进酯化反应向正反应方向进行,在达到乙酸高转化率的同时使乙酸乙酯产品达到高纯度。研究了反应精馏塔侧线采出位置、采出比、反应段塔板数、精馏段塔板数以及膜组件个数等对年度总成本(TAC)的影响,获得了TAC达到最小的过程参数。与传统双塔精馏分离过程对比,RD-PV集成过程节省能耗26.6%,但膜材料价格对RD-PV集成过程的TAC有较大影响,随着渗透汽化技术的成熟,当膜材料价格低于1913 CNY·m-2时,RD-PV集成过程在经济上占据优势。  相似文献   

2.
建立了带多台侧反应器的间歇反应精馏过程,采用Aspen Plus模拟软件构建该过程的非稳态模拟方法。以甲苯氯化生产氯化苄为对象,研究了侧反应器台数、侧线采出率和采出位置、氯气分配、反应精馏时间及再沸器蒸发量等设计参数对间歇反应精馏过程的影响规律。模拟结果表明反应能力和分离达到最佳匹配的最优设计参数为:精馏塔塔板数8块、侧反应器2台、氯气分配7:3、从第3块塔板侧线采出、采出率85%、再沸器蒸发量25 kmol?h?1。在此结构参数和操作条件下完成50 kmol甲苯氯化所需时间为9 h,甲苯的转化率和氯化苄的选择性均可达到98.0%以上。  相似文献   

3.
针对醋酸与异丁烯加成酯化可逆反应温度低、精馏分离温度高的特点,采用带侧反应器的反应精馏集成过程(SRC)建立了低温反应与高温精馏集成的醋酸叔丁酯生产新工艺。固定塔釜上升汽化量100 kmol·h-1,规定新鲜醋酸进料的转化率达到99.9%、醋酸叔丁酯选择性达到97.0%,采用过程模拟考察了进入侧反应器的精馏塔采出量、精馏段塔板数、侧反应器进出口间隔塔板数和侧反应器台数等参数对合成醋酸叔丁酯的SRC过程的影响。模拟结果表明,醋酸与异丁烯加成酯化生产醋酸叔丁酯的SRC过程中只有反应能力与分离能力达到最佳匹配才能使单位产品的生产成本最小。研究结果为醋酸叔丁酯生产新工艺的放大设计与优化奠定了基础。  相似文献   

4.
采用分隔壁精馏塔(DWC)精馏技术对乙苯装置分离工艺进行了改进,将传统分离工艺中的苯塔和乙苯塔集成为1个分隔壁精馏塔,不仅可以实现烷基化产物的分离,而且可以有效降低装置能耗。使用Aspen Plus流程模拟软件对基于DWC的新分离工艺进行了全流程模拟,并对传统分离工艺和分隔壁塔新工艺的能耗进行了对比。计算结果表明,分隔壁塔总塔板数为58块,分隔壁在第15块到第40块塔板之间,进料位置在第24块塔板,侧线抽出苯位置在第4块板,侧线采出乙苯产品位置在第26块板,塔顶回流比为2.3。侧线抽出苯和塔顶采出苯的质量分数分别为99.44%和99.20%,中间侧线采出乙苯的质量分数为99.94%,塔釜物料中乙苯的质量分数为0.06%。分隔壁精馏塔实现了苯、乙苯和多乙苯物系的清晰分离。计算结果还表明,采用DWC分离工艺的能耗比传统的顺序分离工艺降低约41%。  相似文献   

5.
针对丙烯酸与异丁烯酯化加成反应具有反应温度较低、精馏温度较高的特点,文中设计了加压较低温度反应-减压较高温度精馏集成的"背包式"反应精馏生产丙烯酸叔丁酯新工艺。以年度总成本(TAC)为目标,采用序贯优化法对过程工艺参数进行优化设计。规定新鲜丙烯酸进料量为10 kmol/h,塔顶产品中丙烯酸叔丁酯质量分数不低于98%,新鲜丙烯酸转化率达到99%,得到最佳过程配置参数和操作参数:侧反应器台数为2,进入侧反应器1(R1)的侧线采出量为10 kmol/h,进入侧反应器2(R2)的侧线采出量为5 kmol/h,以及催化剂总装填量为200 kg且分配比为0.7/0.3,总塔板数为28块(包括冷凝器和再沸器),精馏段塔板数为15块,侧反应器进出口间隔塔板数为5,回流比为0.64,此时TAC最小为1.439×10~6元/a。  相似文献   

6.
崔扬  张效龙  满兴哲  王志亮 《化学工程》2020,48(6):28-33,62
为了获得节能经济的分离仲丁醇(SBOH)-仲丁氧基甲氧基甲烷(SMMB)-二仲丁氧基甲烷(DSBM)共沸物系的精馏工艺,文中基于热耦合精馏原理及萃取精馏原理构建了6种分离序列,以TAC(年总成本费用)最小为优化目标,采用序贯迭代优化方法考察理论塔板数、回流比、进料位置、侧线采出位置等设计参数对节能、投资的影响。研究结果表明:分隔壁侧线精馏塔(DWC-SR)与萃取隔壁精馏塔(EDWC)组合分离序列,节能与降低成本效果显著。与其他5种分离序列比,再沸器热负荷分别减少3.34%,26.44%,0.34%,3.66%,26.63%,TAC分别节约2.19%,23.77%,1.67%,3.78%,24.74%。  相似文献   

7.
围绕芳烃生产过程节能降耗需求,采用Aspen模拟平台建立了二甲苯精馏单元、吸附分离单元、异构化单元机理模型,并以此为基础进行模拟仿真,提出了从二甲苯精馏塔侧线采出OX的工艺改进方案。在工业操作条件下,考察了二甲苯精馏塔不同塔板位置对侧线OX最大抽出量的影响规律,并获得最优采出位置和采出量;结合实际工业对象,分析了侧线抽出方案对吸附分离和异构化单元能耗的联动效应,并对芳烃全流程生产的经济性进行测算。结果表明,侧线抽出可直接减少13. 25 t/h的大循环量,显著降低吸附分离单元能耗,同时也重新配置了精馏单元芳烃资源,降低了精馏单元内部能耗,为芳烃生产节能降耗提供了有益思路。  相似文献   

8.
针对乳酸与甲醇酯化反应体系中乳酸和甲醇的沸点分别为最高沸点与最低沸点,属于反应精馏设计中最劣沸点序列,导致乳酸甲酯反应精馏过程反应段效率低下的问题,设计了乳酸过量进料的反应精馏合成乳酸甲酯工艺。以年度总费用(TAC)为目标,采用序贯优化法对过程工艺参数进行优化设计,结果表明当乳酸过量比为1.3、反应精馏塔反应塔板数为7块、提馏段塔板数为16块(包括塔底再沸器)时,过程年度总费用达到最小为3.05×10~6 CNY×a~(-1)。相比于等比进料合成乳酸甲酯反应精馏工艺,乳酸过量进料反应精馏工艺能耗降低70.4%,TAC减小51.2%,更具经济效益。  相似文献   

9.
正本发明提供了一种渗透汽化-加压精馏集成分离碳酸二甲酯和甲醇的工艺,其特征在于反应精馏塔得到的碳酸二甲酯和甲醇的共沸液经过渗透汽化膜系统时,渗透汽化膜有效突破了甲醇-碳酸二甲酯共沸瓶颈,碳酸二甲酯低浓度侧料液返回至反应精馏塔进行循环分离,碳酸二甲酯高浓度侧料液输送至加压精馏塔,经加压精馏塔分离后塔釜得到质量纯度为99.6%以上的碳酸二甲酯产品,塔顶得到甲醇含量较高的碳酸二甲酯和甲醇混合液,也返回到反应精馏塔中,进入下一次循环分离。本发明工艺  相似文献   

10.
利用Aspen Plus模拟软件对二甲醚-甲醇-水分离过程中的侧线精馏塔进行稳态研究,在设计规定下对侧线精馏塔的设计与操作参数进行确定与优化,最终获得侧线精馏塔的理论板数为52块,最佳进料位置为第32块塔板,侧线出料位置为第12块塔板,回流比为41,灵敏板为第3块塔板。通过Aspen Dynamics考察了进料流量扰动(±5%)和进料组成扰动(±5%)的工况下,侧线精馏塔采出的产品纯度、灵敏板温度、采出量、再沸器热负荷等参数均可达到平衡,恢复至设定值,模拟结果说明侧线精馏塔的控制方案有效可行。  相似文献   

11.
王丹阳  匡国柱 《辽宁化工》2010,39(8):816-819
为揭示反应精馏法制备乙酸乙酯的特性及得到较高纯度的产品,并为反应精馏工艺过程的深入研究及工业化提供理论依据,应用Aspen Plus软件模拟分析反应精馏过程。结果表明:给定回流比的情况下,理论塔板数、精馏段塔板数及进料位置、进料比、催化剂用量等参数均对产品纯度及分离效果产生影响。  相似文献   

12.
以正丙醇-异丙醇体系为例,研究了带有侧线采出回流的部分透热精馏操作。在该操作中,精馏段侧线采出气相,经塔外冷凝后回流至塔内采出板上方;提馏段某塔板被同轴的夹套式中间再沸器环绕,侧线采出该板处的气相回流至塔内采出板上方。通过单因素分析和响应面法对精馏段和提馏段操作的相关工艺参数分别进行了模拟优化,并对相应操作的热力学性能和分离性能的变化进行了分析。最终优化结果表明:达到规定的分离效果,带有侧线采出回流的部分透热精馏相较于绝热精馏有效能损失降低了26.5%。带有侧线采出回流的部分透热精馏操作通过合理分配能量、降低对热剂和冷剂的品位要求和提高能量利用率,最终达到节能目的。  相似文献   

13.
隔板精馏技术是一种节能、高效的新型分离工艺。以氯化亚砜产品的精馏过程为实例,应用PRO/II软件对两塔工艺进行模拟计算,模拟结果与工业生产实际数据对比吻合良好,可以得到高纯度产品。进一步模拟计算隔板精馏塔工艺,讨论了汽液相分配比、回流量和侧线采出位置对产品纯度及能耗的影响,确定最适宜操作条件为液相分配比1.4、汽相分配比2、回流量17 000 kg/h、侧线于采出段34块板采出。在最适宜操作条件下与常规精馏塔间接、直接精馏序列相比,分别可节能25.8%和17.9%。  相似文献   

14.
金靓婕  白鹏  郭翔海 《化工学报》2019,70(5):1804-1814
以正丙醇-异丙醇体系为例,研究了带有侧线采出回流的部分透热精馏操作。在该操作中,精馏段侧线采出气相,经塔外冷凝后回流至塔内采出板上方;提馏段某塔板被同轴的夹套式中间再沸器环绕,侧线采出该板处的气相回流至塔内采出板上方。通过单因素分析和响应面法对精馏段和提馏段操作的相关工艺参数分别进行了模拟优化,并对相应操作的热力学性能和分离性能的变化进行了分析。最终优化结果表明:达到规定的分离效果,带有侧线采出回流的部分透热精馏相较于绝热精馏有效能损失降低了26.5%。带有侧线采出回流的部分透热精馏操作通过合理分配能量、降低对热剂和冷剂的品位要求和提高能量利用率,最终达到节能目的。  相似文献   

15.
对甲醇精馏塔进行了建模及分析,研究了精馏塔回流比与塔板数之间的相互变化关系,精馏塔回流比和塔板数的变化对塔顶产品纯度的影响,以及精馏塔在有无侧线采出时产品纯度的变化。表明当精馏塔回流比为3,理论板数为30,侧线采出物料在第23块塔板时,常压精馏塔可产出工业用甲醇一级品标准的精甲醇产品,同时本文也给出了本工况下的最小回流比及最小理论板数。  相似文献   

16.
分壁精馏塔分离对二甲苯吸附抽出液的工艺分析   总被引:1,自引:0,他引:1  
郭艳姿 《现代化工》2013,33(6):117-120,122
分壁精馏塔具有投资少、能耗低的优点。以芳烃联合装置中的吸附抽出液分离为例,采用ASPEN软件进行模拟计算,考察了分壁精馏塔的各段理论板数、气液相分配比、回流比、进出料位置对分离结果的影响。结果表明,在分壁精馏塔的理论板数为80~90、分壁段的理论板数为40~50、公共精馏段和公共提馏段的理论板数为15~20、进料位置为进料段的第15~25块理论板、侧线采出位置为侧线产品段的第25~30块理论板、回流比为100~110、气相分配比为0.85~1.75、液相分配比为0.5~0.9的条件下,分离得到的甲苯、对二甲苯、对二乙苯的纯度均不低于99.9%;在相同的产品质量和收率下,采用分壁精馏塔较现有的两塔分离工艺总能耗降低22.02%,具有明显的节能优势。  相似文献   

17.
以固体酸为催化剂,在中试催化精馏塔中进行了乙酸与乙醇反应制备乙酸乙酯的工业试验,试验塔的精馏段塔径为600 mm,内装陶瓷规整填料,反应精馏段塔径为1 000mm,内装7层立体催化精馏塔板.采用连续操作,考察了不同的回流比、釜酸质量分数、进料流量对反应和分离过程的影响,同时测定了塔板上气液相质量分数的分布.通过试验得到...  相似文献   

18.
将隔板塔技术用于乳酸甲酯水解的反应精馏过程,并采用Aspen Plus软件对隔板塔流程进行了模拟与优化,考察了隔板上下端位置、侧线水采出位置及塔釜再沸器功率对反应的影响。优化结果为:当隔板上端在第7块板,隔板下端在第16块板,水在侧线出料段的第7块塔板采出时,塔釜再沸器功率为302.4 kW,满足了乳酸甲酯水解反应与分离的要求。相对于传统乳酸甲酯水解反应精馏和乳酸精制两塔联合流程,隔板塔技术的应用可以减少中间组分水在塔中的返混,能耗降低了28.04%,有效地提高了整个工艺过程的效率。  相似文献   

19.
连续精馏分离乙酸乙酯与丙酮体系的模拟研究   总被引:1,自引:1,他引:0  
对制备超细高氯酸铵产生的废液即乙酸乙酯-丙酮混合液的分离过程进行了模拟研究.采用Aspen Plus化工模拟软件中的RadFrac模块进行连续精馏模拟,分别考察了塔板数、进料位置、回流比及塔顶出料量对分离效果的影响.结果表明:对于处理流量3 kg/h乙酸乙酯-丙酮的混合液,精馏塔在塔板数40,进料位置第16块塔板,回流...  相似文献   

20.
利用AspenPlus软件对常规的两塔间接序列精馏工艺分离氯化亚砜进行了模拟计算,并提出了一种新型分离工艺—隔板精馏塔工艺。通过对隔板精馏塔的模拟计算,研究了预分离段进料位置、侧线采出位置、回流进料比和分配比对产品纯度和再沸器能耗的影响,结果说明最佳的工艺条件为:预分离段第6块板进料,主塔第55块板采出,回流进料比为4.45,液相分配比为1.60,汽相分配比为1.98。将隔板塔在最佳操作条件下的能耗与常规两塔工艺操作能耗和设备投资进行比较,隔板精馏塔节约冷凝器负荷和再沸器负荷分别为34.62%和34.64%;然后运用专业的设备投资计算软件CAPCOST计算2种工艺设备投资,结果表明,隔板精馏塔新工艺可以降低17.27%的设备投资。综上可知隔板精馏分离氯化亚砜是一种节能、高效的新型分离工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号