首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this research, marble dust waste was recycled as raw material for the preparation of composite materials. Epoxy toluene oligomer (ETO) was synthesized from toluene and epichlorohydrin, which was used as a comatrix in 50 wt% with commercial epoxy resin (ER). Its chemical structure was characterized with Fourier transform infrared spectroscopy and chemical analyses. The rigid filler used in epoxy polymer matrix was the marble processing waste obtained from wastewater using different coagulants, such as sepiolite, zeolite, or pumice. The thermal and mechanical properties of the composites were evaluated with thermogravimetric and mechanical analyses. The results showed that the marble wastes with all coagulants can significantly improve the thermal stability of an ER–ETO matrix at temperatures above 350°C. Composites exhibited a higher thermal degradation temperature with a much higher char yield. Surface hardness and tensile strength of the composites were higher than those of pure epoxy polymer matrix, as well. Scanning electron microscopy was used for the characterization of surface and cross‐sections of the composites to verify the results. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
This research work investigates the tensile strength and elastic modulus of the alumina nanoparticles, glass fiber, and carbon fiber reinforced epoxy composites. The first type composites were made by adding 1–5 wt % (in the interval of 1%) of alumina to the epoxy matrix, whereas the second and third categories of composites were made by adding 1–5 wt % short glass, carbon fibers to the matrix. A fourth type of composite has also been synthesized by incorporating both alumina particles (2 wt %) and fibers to the epoxy. Results showed that the longitudinal modulus has significantly improved because of the filler additions. Both tensile strength and modulus are further better for hybrid composites consisting both alumina particles and glass fibers or carbon fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39749.  相似文献   

3.
Epoxy and polyester resins have been reinforced with methacrylamide (MAA) treated bamboo strip matting to develop bamboo fiber reinforced plastic composites. Bamboo mats were graft copolymerized with 1, 3, and 5% solution of MAA. The mechanical (tensile strength, elastic modulus, flexural strength, and flexural modulus), thermal, and water absorption properties of the composites were determined. One percent treatment of bamboo with MAA gave optimum results with epoxy resin. The mechanical properties were improved. TGA results reveal that the degradation temperature of the composite has improved after grafting. The weight loss of 1% MAA treated bamboo–epoxy composite reached a value of 95.132% at 795°C compared to 97.655% at 685°C of untreated bamboo–epoxy composite. Water absorption in the composites was studied by long term immersion and 2 h boiling in distilled water. The process of water absorption indicates Fickian mode of diffusion. MAA treatment results in reduced water uptake. There was improvement in the properties of pretreated bamboo‐polyester matrix composite as well. Three percent treatment of bamboo with MAA gave optimum results with polyester resin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Non‐destructive techniques are suitable alternatives for characterization of composites. The aim of this study is to analyze the composites of epoxy resin (ER)/marble waste powder (MWP) by ultrasonic method. The effects of marble powder, coagulant type, and dosage on the ultrasonic properties of ER/MWP composites were investigated. The ultrasonic wave velocities of composites were measured with the pulse–echo method at room temperature by a flaw detector. The values of the acoustic impedance, Poisson's ratio, and elastic constants of the samples were calculated by the measured values of the densities and both longitudinal and shear ultrasonic wave velocities. According to the results, the ER/MWP composite using sepiolite coagulant in dosages of 4 g/500 mL has showed the highest values of elastic constants. POLYM. COMPOS. 36:584–590, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

6.
Epoxy–clay nanocomposites were prepared by the dispersion of an organically modified layered clay in an epoxy resin (diglycidyl ether of bisphenol A) and curing in the presence of methyl tetrahydro acid anhydride at 80–160°C. The nanometer‐scale dispersion of layered clay within the crosslinked epoxy‐resin matrix was confirmed by X‐ray diffraction and transmission electron microscopy, and the basal spacing of the silicate layer was greater than 100–150 Å. Experiments indicated that the hydroxyethyl groups of the alkyl ammonium ions, which were located in the galleries of organically modified clay, participated in the curing reaction and were directly linked to the epoxy‐resin matrix network. Experimental results showed that the properties of epoxy were improved, evidently because of the loading of organically modified clay. The impact strength and tensile strength of the nanocomposites increased by 87.8 and 20.9%, respectively, when 3 wt % organic clay was loaded, and this demonstrated that the composites were toughened and strengthened. The thermal‐decomposition and heat‐distortion temperatures were heightened in comparison with those of pure epoxy resin, and so were the dynamic mechanical properties, including the storage modulus and glass‐transition temperature. Moreover, experiments showed that most properties of the composites were ameliorated with low clay contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2649–2652, 2004  相似文献   

7.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006  相似文献   

8.
The effect of epoxy resin on mechanical and Rheological properties, and moisture absorption of wood flour polypropylene composites (WPCs) were investigated. The reactive mixing of epoxy resin with 30, and 40 wt% wood flour and polypropylene (PP) was carried out in twin screw extruder with a special screw elements arrangement. PP grafted maleic anhydrides (MPP) were used as coupling agent to improve the interfacial interactions of wood flour, epoxy resin, and PP. The tensile strength of composites decreased, and elastic modulus and moisture absorption increased with increasing epoxy resin content. The complex viscosity η* increased with increasing epoxy resin content of composites, and a synergistic effect in increasing the η* was observed at 3 wt% resin. The epoxy resin modified wood‐PP composites that chemically coupled by MPP showed minimum water absorption with highest elastic modulus. The experimental oscillation rheologyical data were used to drive a model to predict the flow behavior of WPCs, in a wide range of frequencies. POLYM. ENG. SCI., 47:2041–2048, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
This article reports a comparative study of polypropylene (PP) nanocomposites synthesized with nanosilica (NS) and diglycidyl ether of bisphenol A, an epoxy‐resin‐grafted nanosilica (ENS), as nanofillers. These nanocomposites were prepared with the melt‐mixing method at a constant loading level of 2.5 wt %; this loading level was much lower than that used for fillers in conventional composites. The effects of pure NS and ENS on the thermal, structural, mechanical, and dynamic mechanical properties of PP were analyzed with wide‐angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopy. The transmission electron microscopy studies showed a better dispersion of ENS in the PP matrix, that is, in the polypropylene‐epoxy‐resin‐grafted nanosilica (PP–ENS) nanocomposite, in comparison with NS in the PP matrix, that is, in the polypropylene–nanosilica (PP–NS) nanocomposite. Also, the thermogravimetric analysis results showed a higher thermal stability for PP–ENS than PP–NS. Furthermore, the dynamic mechanical analysis studies showed an increase in the elastic modulus and glass‐transition temperature for PP–ENS with respect to PP–NS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2117–2124, 2006  相似文献   

10.
Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Carbon nanotubes (CNTs) were used to improve the tensile properties of an epoxy resin and its continuous carbon fiber (CF) reinforced composites. Micrography picture showed that CNTs has been well incorporated into the composites, and made the fracture cross section more rougher through sharing the stress. For the CNT/epoxy composite, the tensile strength and modulus both increased upon the CNT addition, and at a CNT volume concentration of 2.0%, the maximum enhancements in the tensile strength and modulus were achieved as 26.7% and 21.5%, respectively. For the CNT‐CF/epoxy composite, the maximum enhancement in tensile strength was achieved as 11.6% at a CNT volume concentration of 1.0% and then decreased with the further increase of the CNT addition, but the tensile modulus increased monotonically upon the CNT addition. POLYM. COMPOS., 36:1664–1668, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(9):1974-1981
The interest in using different solid waste as reinforcement in polymer composite preparation has increased considerably in recent years. Slag is one of the inorganic waste materials obtained from ore processing. In this work, epoxy composites filled with different percentages of slag were prepared. Physico‐mechanical, thermal, and coating properties of these composites were determined depending on the amount of filler, type of hardener, and polyethylene glycol (PEG) addition. X‐ray diffraction (XRD) studies were carried out to examine the compatibility of the filler and epoxy resin and XRD results showed good compatibility between two materials. The results of mechanical testing illustrated that hardness of the epoxy composites containing anhydride was partially higher than with Epamine PC17 in contrast to elongation at break. The tensile strength and Young modulus decreased with increasing filler amount. When compared to neat epoxy resin, corrosion, and adhesion properties of the composites with filler addition did not change significantly. The highest water sorption values were obtained for the epoxy composites with PEG addition. The composites hardened by anhydride had better thermal stability than the composites including Epamine PC17. POLYM. COMPOS., 38:1974–1981, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
In this study, we synthesized poly(methyl methacrylate) (PMMA) epoxy vitrimer composites by doping methyl methacrylate (MMA) and benzoyl peroxide into a curing system of epoxy resin and citric acid. The vitrimer composites were characterized with dynamic mechanical thermal analysis, scanning electron microscopy, and stress‐relaxation and lap‐shear testing. The test results show that with increasing amount of MMA, the existence of PMMA in the epoxy vitrimer matrix in the form of intermiscible, slightly soluble, and phase separation became more evident. When the doping amount of PMMA reached 10–25 wt %, the bonding strength of the PMMA–epoxy vitrimer composites was about two times that of the epoxy vitrimer (from 2.3 to 4.3 MPa). This showed that the self‐healing strength of the vitrimer composites was better than that of the pure vitrimer. When the PMMA in the epoxy matrix was in a slightly soluble form, the linear PMMA improved the mechanical properties of the epoxy vitrimer by physical winding. At the same time, the doping of PMMA promoted the transesterification rate of the epoxy vitrimer and enhanced the bonding strength of the composites without lowering the epoxy vitrimer glass‐transition temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46307.  相似文献   

14.
The aim of this work is to assess the opportunity to use untreated waste office paper, alone and in combination with jute fabric, as a reinforcement in epoxy composites. Five different stacking sequences were manufactured and tested. Adding untreated waste office paper sheets has been revealed to increase both flexural and tensile strength of the neat resin and of the untreated jute fabric reinforced composites. The effect of the hybridization on tensile and flexural behavior has been evaluated through scanning electron microscopy observations and acoustic emission. The results confirm that waste office paper sheets can be used as a reinforcement for an epoxy resin, thus representing a viable alternative to paper recycling. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
L Jong 《Polymer International》2005,54(11):1572-1580
Soy spent flakes (SSF) is a plentiful renewable material from the waste stream of commercial soy protein extraction. SSF contains mostly soy carbohydrate and a small fraction of soy protein. Dry SSF is a rigid material and has a shear elastic modulus of ~4 GPa. Aqueous dispersions of SSF were blended with styrene‐butadiene (SB) latex to form rubber composites. Soy carbohydrate increased the tensile stress in the small strain region, but also decreased the elongation at break. The shear elastic modulus of the composites showed an increase in the small strain region, consistent with the stress–strain behavior. The SSF composites showed a slightly better modulus recovery than the protein composite after eight cycles of strain sweep. In the small strain region, the shear elastic modulus of 30 % filled composites at 140 °C was about 160 times greater than that of the unfilled elastomer, showing a significant reinforcement effect caused by SSF. Compared with soy protein isolate, the recovery behavior after eight cycles of dynamic strain suggests that SSF composites have a slightly stronger filler–rubber interaction. In general, SSF composites gave a slightly higher composite strength compared with the protein composites, but at a much lower cost. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

17.
A new type of graphite nanoplatelets (GN) reinforced polyarylene ether nitriles (PEN)/bisphthalonitrile (BPh) interpenetrating polymer network with high strength and high toughness was synthesized and characterized. The results showed that GN and PEN had obvious synergistic effect on its properties of resulted BPh composites. Compared to pure BPh, with a loading of 10 wt % PEN and 10 wt % GN, the obtained composites exhibited excellent mechanical properties. In these systems, the flexural toughness and strength of BPh resin could be enhanced with the incorporation of PEN; meanwhile, GN could further improve the flexural modulus and thermal stability lowered by PEN. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
采用熔融混合法,利用超声分散制备了碳纳米管/环氧树脂纳米复合材料。研究了羟基化碳纳米管的添加量对复合材料的反应活性的影响;同时测试了碳纳米管/环氧树脂纳米复合材料的弯曲性能和电性能,并利用透射电镜对碳纳米管在复合材料中的微观结构进行了表征。结果表明:碳纳米管使复合材料的反应活性有所提高;当碳纳米管含量为1%时,碳纳米管/环氧树脂复合材料的弯曲强度和弯曲模量分别由纯体系的143.32MPa和3563.76MPa提高到155.79MPa和3690.45MPa,碳纳米管在环氧树脂基体中呈单根分散。碳纳米管使复合材料的体积电阻率和表面电阻率下降2个数量级。  相似文献   

19.
The influence of epoxy resin modification by 3‐aminopropyltriethoxysilane (APTES) on various properties of warp knitted viscose fabric is reported in this study. Dynamic mechanical, impact resistance, flexural, thermal properties, and burning behavior of the epoxy/viscose fabric composites are studied with respect to varying content of silane coupling agent. The results obtained for APTES‐modified epoxy resin based composites reinforced with unmodified viscose fabric composites are compared to unmodified epoxy resin based composites reinforced with APTES‐modified viscose fabric. The dynamic mechanical behavior of the APTES‐modified resin based composites indicates improved interfacial adhesion. The composites prepared from modified epoxy resin exhibited a twofold increase in impact resistance. The improved adhesion between the fiber and modified resin was also visible from the scanning electron microscope analysis of the impact fracture surface. There was less influence of resin modification on the flexural properties of the composites. The 5% APTES modification induced early degradation of composites compared to all other composites. The burning rate of all the composites under study is rated to be satisfactory for use in automotive interior applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46673.  相似文献   

20.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号