首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
FBX proteins are subunits of the SCF complex (Skp1–cullin–FBX) belonging to the E3 ligase family, which is involved in the ubiquitin–proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions.  相似文献   

2.
Sea urchins are long-living marine invertebrates with a complex innate immune system, which includes expanded families of immune receptors. A central immune gene family in sea urchins encodes the Transformer (Trf) proteins. The Trf family has been studied mainly in the purple sea urchin Strongylocentrotus purpuratus. Here, we explore this protein family in the Mediterranean Sea urchin Paracentrotus lividus. The PlTrf genes and predicted proteins are highly diverse and show a typical Trf size range and structure. Coelomocytes and cell-free coelomic fluid from P. lividus contain different PlTrf protein repertoires with a shared subset, that bind specifically to E. coli. Using FACS, we identified five different P. lividus coelomocyte sub-populations with cell surface PlTrf protein expression. The relative abundance of the PlTrf-positive cells increases sharply following immune challenge with E. coli, but not following challenge with LPS or the sea urchin pathogen, Vibrio penaeicida. Phagocytosis of E. coli by P. lividus phagocytes is mediated through the cell-free coelomic fluid and is inhibited by blocking PlTrf activity with anti-SpTrf antibodies. Together, our results suggest a collaboration between cellular and humoral PlTrf-mediated effector arms in the P. lividus specific immune response to pathogens.  相似文献   

3.
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.  相似文献   

11.
The presence of thousands of repetitive sequences makes the centromere a fragile region subject to breakage. In this study we collected 31 cases of rearrangements of chromosome 18, of which 16 involved an acrocentric chromosome, during genetic screening done in three centers. We noticed a significant enrichment of reciprocal translocations between the centromere of chromosome 18 and the centromeric or pericentromeric regions of the acrocentrics. We describe five cases with translocation between chromosome 18 and an acrocentric chromosome, and one case involving the common telomere regions of chromosomes 18p and 22p. In addition, we bring evidence to support the hypothesis that chromosome 18 preferentially recombines with acrocentrics: (i) the presence on 18p11.21 of segmental duplications highly homologous to acrocentrics, that can justify a NAHR mechanism; (ii) the observation by 2D-FISH of the behavior of the centromeric regions of 18 respect to the centromeric regions of acrocentrics in the nuclei of normal subjects; (iii) the contact analysis among these regions on published Hi-C data from the human lymphoblastoid cell line (GM12878).  相似文献   

12.
13.
14.
Onychostoma barbatulum and O. alticorpus, two primarily freshwater cyprinid fish, have similar morphological characters and partially overlapping ecological habitats. In order to explore the genetic differences between these two species, chromosomal characteristics and genetic variations were examined by fluorescence in situ hybridization (FISH) of 5S rDNA and cytochrome (Cyt) b gene analysis. Ten specimens of O. barbatulum and O. alticorpus were collected from the Nanzihsian Stream in southern Taiwan. FISH revealed that the 5S rDNA loci of O. barbatulum and O. alticorpus were found at a pericentromeric and subtelomeric position, respectively, in a pair of submetacentric chromosomes. Cyt b genes were amplified and sequenced from five individuals of each species. Intraspecific genetic distances ranged from 0.001–0.004 in O. barbatulum and from 0.001–0.006 in O. alticorpus. Genetic distances between these two species ranged from 0.132–0.142. The phylogenetic tree showed these two species are not sister species. In conclusion, FISH cytogenetic information and Cyt b gene analyses indicated that these two species have significantly different genetic characteristics; nevertheless, their morphological similarities may be due to environmental adaptation.  相似文献   

15.
16.
17.
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号