首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
For the dehydrogenation of cyclohexanol a series of Cu–ZnO/SiO2 catalysts with various Cu to ZnO molar ratios was prepared using the impregnation method, with the loading of copper fixed at 9.5 at.%. The catalysts were characterized by XPS, H2–N2O titration, BET, H2-TPR, NH3-TPD and XRD techniques. The results indicate that the addition of ZnO can improve the dispersion of copper species on reduced Cu–ZnO/SiO2 (CZS) catalysts. Cu0 and Cu+ species were found on the reduced CZS catalysts surface, and the amount of Cu+ increased with the content of ZnO increasing. The addition of ZnO increased the acidity of the CZS catalysts. However, only Cu0 species can be found on the reduced Cu/SiO2 (CS) catalyst surface. According to the reaction results, we found that the selectivity to phenol was related to the amount of Cu+ species, the Cu+ species should be the active sites for the production of phenol, the Cu0 is responsible for cyclohexanol dehydrogenation to cyclohexanone.  相似文献   

2.
Using TiO2 as carrier, CuO/TiO2 catalysts with different CuO loading were prepared by the impregnation method. The catalytic activities in NO+CO reaction were examined with a micro-reactor gas chromatography reaction system and the methods of TPR, XPS and NO-TPD. It was found that the catalytic activities were affected by pretreatment atmosphere, i.e. H2 atmosphere > reduction–reoxidation > 10%CO/He > reaction gas (fresh sample). NO decomposition was better by low-valence Cu species than by high-valence Cu species, i.e. Cu0>Cu+>Cu2+. The XPS results indicated that Cu species on CuO/TiO2 were Cu0, Cu+, normal Cu2+(Cu2+(I)) and chain-structured Cu2+(Cu2+(II)) as –Cu–O–Ti–O–. The activities of Cu2+(II) were much higher than that of Cu2+(I), but both species were very unstable in the reaction atmosphere and easily reduced by CO, which accounted for the variable activities of fresh catalysts with increasing reaction temperature. In NO+CO reaction, the redox process was a cycle of Cu+–Cu2+(I) at low reaction temperature but was a cycle of Cu0–Cu+ at high reaction temperature. As shown by NO-TPD, high catalytic activities could be attributed to the following factors, e.g. oxygen caves on the catalyst’s surface after pretreatment with H2 and reduction–reoxidation, formation of Cu0 after pretreatment with H2, and increment of Cu species dispersion and formation of Cu2+(II) after pretreatment with reduction–reoxidation.  相似文献   

3.
在磁性膨润土(MBent)表面接枝聚乙烯亚胺(PEI)制备了聚乙烯亚胺改性磁性膨润土(PEI/KH560/MBent),采用FTIR、VSM、XRD、TGA、EA、SEM和EDS对其进行了表征,考察了其对水溶液中Pb2+和Cu2+的吸附性能。结果表明,聚乙烯亚胺已成功接枝于磁性膨润土表面,并有效提高其对Pb2+和Cu2+吸附量;溶液初始pH对吸附量影响较大,随着pH的增大,吸附量增加。在pH=5,溶液初始质量浓度为300 mg/L,PEI/KH560/MBent对Pb2+和Cu2+吸附量分别为96.21和61.08 mg/g;吸附过程符合准二级动力学模型,吸附行为符合Langmuir吸附等温模型。热力学研究表明,吸附为自发吸热过程。经过5次循环利用后,其吸附容量仍保持初始的60%以上,表明PEI/KH560/MBent具有一定的重复利用性。  相似文献   

4.
《分离科学与技术》2012,47(16):2539-2548
S-doped TiO2 as a novel adsorbent for Cu2+ cations removal from aqueous solutions was synthesized by simple sol-gel process. Removal of Cu2+ cations from aqueous solutions was investigated with particular reference to the effects of initial Cu2+ cations concentration, pH-value, adsorbent dosage, and temperature on adsorption. It was found that the maximum adsorption capacity was 96.35 mg g?1 at 328 K. The adsorption equilibrium isotherms and the kinetic data were well described by the Langmuir and pseudo-second-order kinetic models, respectively. The high uptake capability of S-doped TiO2 makes it a potentially attractive adsorbent for the removal of heavy metal pollutants from aqueous solution.  相似文献   

5.
Ultraviolet/visible (UV/vis) spectroscopy was used to determine qualitatively and quantitatively Cu2+, Co2+, Co3+, and Fe3+ in oxidized Cu–Co ore leachates. The mineralogical and chemical characteristics of the three oxidized Cu–Co ore samples considered were determined using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and X-ray fluorescence spectrometry (XRF). The results showed that Cu and Co in the samples were in the form of carrollite (Co2CuS4), malachite (Cu2CO3(OH)2, and heterogenite (CoO(OH)). The samples contained (2.73% Cu and 0.19% Co), (2.82% Cu and 0.07% Co), and (0.03% Cu and 0.05% Co), respectively. Gangues were mainly constituted of quartz, goethite, and hematite. The ultraviolet/visible (UV/vis) results indicated that the wavelengths of absorbance of the metal ions in dilute ethylenediaminetetraacetic acid aqueous solution (pH ≈ 3.5) were Fe3+ (293 nm), Cu2+ (821 nm), Co3+ (344 nm), and Co2+ (512 nm). The molar concentrations of the metal ions obtained using the UV/vis method compared well with the results obtained using the atomic absorption spectroscopy (AAS) method. UV/vis spectroscopy was also used to monitor the conversion of Co3+ into Co2+ using different reducing agents. The results showed that the molar concentration of Co2+ in the aqueous solutions increased with the addition of reducing agents, of about 80.95% (copper foil), 61.22% (ferrous sulfate), and 20.35% (sodium sulfite), respectively.  相似文献   

6.
Homogeneous (Cu2+ ions) and heterogeneous (Cu2+-pillared clay) Fenton-like catalysts have been compared in the conversion of p-coumaric acid. The performances of the two classes of catalysts are similar for an analogous amount of copper, but there are some relevant differences in terms of (i) the presence of an induction time, (ii) the turnover frequency, (iii) the efficiency in the use of H2O2, (iv) the initial attack of p-coumaric acid (hydroxylation on the aromatic ring or oxidative attack on the double bond of the lateral chain), and (v) the effect of dissolved oxygen on the removal of total organic carbon (TOC). These differences were interpreted in terms of reaction network of generation of radical oxygen species and of organics conversion. The possible formation of a surface peroxo adduct coordinated to a copper binulcear site was also evidenced for the solid heterogeneous catalyst.  相似文献   

7.
《分离科学与技术》2012,47(2):215-223
The carrier mediated transport of Cu2+ ions from an aqueous medium has been examined. The ability of Erythromycin Ethyl Succinate (EES) as a carrier to form a complex with Cu2+ ions and transport them to the receiving phase is reported. The fundamental parameters influencing the transport of Cu2+ ions such as the pH in the source and receiving phases and concentration of the stripping agent in the receiving phase have been optimized and accordingly, the amount of Cu2+ transported across the liquid membrane after 5 h was 94.3 ± 1.8% in the presence of L-histidine as a suitable stripping agent. Moreover, the selectivity and efficiency of Cu2+ ions transport from aqueous solution over other cations in ternary and quaternary mixtures have been investigated. The results indicate that our fabricated membrane is very sensitive toward Cu+2 ions in the presence of heavy metal ions.  相似文献   

8.
A heterogenized Wacker catalyst system in which pores of a high surface area alumina were filled with an aqueous solution of PdCl2CuCl2 was active for the oxidation of CO near room temperature. The structure of the catalyst was studied by X-ray absorption fine structure (XAFS). The active phase of Pd was a Pd11 species containing chlorine and, probably, carbonyl ligands. Direct interaction of PdPd or PdCu was not detected. The active phase of copper was found to be solid Cu2Cl(OH)3 particles in agreement with the X-ray diffraction (XRD) results. The presence of Cu was essential to keep the Pd in the Pd11 state during the reaction. The rates of CO oxidation measured at temperatures of 30–70°C showed a minimum at 40°C, which was attributable partly to an unusual structure change of the active palladium species during the reaction at this temperature.  相似文献   

9.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

10.
A comprehensive physicochemical model for cobalt deposition onto a cobalt rotating disk electrode in sulfate-borate (pH 3) solutions is derived and statistically fit to experimental EIS spectra obtained over a range of CoSO4 concentrations, overpotentials and rotation speeds. The model accounts for H+ and water reduction, homogeneous reactions and mass transport within the boundary layer. Based on a thermodynamic analysis, the species CoSO4(aq), B(OH)3(aq), B3O3(OH)4, H+ and OH and two homogeneous reactions (B(OH)3(aq) hydrolysis and water dissociation) are included in the model. Kinetic and transport parameters are estimated by minimizing the sum-of-squares error between the model and experimental measurements using a simplex method. The electrode response is affected most strongly by parameters associated with the first step of Co(II) reduction, reflecting its control of the rate of Co deposition, and is moderately sensitive to the parameters for H+ reduction and the Co(II) diffusion coefficient. Water reduction is found not to occur to any significant extent under the conditions studied. These trends are consistent with that obtained by fitting equivalent electrical circuits to the experimental spectra. The simplest circuit that best fits the data consists of two RQ elements (resistor-constant phase element) in parallel or series with the solution resistance.  相似文献   

11.
The catalytic oxidation of CO over nanocrystallite Cu x Mn(1−x)Fe2O4 powders was studied using advanced quadruple mass gas analyzer system. The oxidation of CO to CO2 was investigated as a function of reactants ratio and firing temperature of ferrite powders. The maximum CO conversion was observed for ferrite powders which have equal amount of Cu2+ and Mn2+ (Cu0.5Mn0.5Fe2O4). The high catalytic activity of Cu0.5Mn0.5Fe2O4 can be attributed to the changes of the valence state of catalytically active components of the ferrite powders. The firing temperature plays insignificant role in the catalytic activity of CO over nanocrystallite copper manganese ferrites. The mechanism of catalytic oxidation reactions was studied. It was found that the CO catalytic oxidation reactions on the surface of the Cu x Mn1−x Fe2O4 was done by the reduction of the ferrite by CO to the oxygen deficient lower oxide then re-oxidation of this phase to the saturated oxygen metal ferrite again.  相似文献   

12.
Deuk Ki Lee 《Catalysis Letters》2005,99(3-4):215-219
For a series of oxidized Cu-ZSM-5 catalysts which were characterized in the catalytic amounts of the oxygen-bridged Cu2+-dimers, [Cu2+–O–Cu2+], activation energies required for the reduction of the Cu2+-dimer species by O2 release were determined using the temperature-programmed experiments of thermal O2 desorption (TPD) and N2O decomposition reaction. The activation energy for the thermal reduction of the Cu2+-dimers during the TPD decreased linearly with increasing molar number of the Cu2+-dimers available on the ZSM-5, suggesting that the energy barrier of the O2 formation via a Langmuir-Hinshelwood (LH) mechanism increased in proportion to the distance between the two Cu2+-dimers in the nearest neighbor. Activation energies of thermal O2 release were comparable to the literature-reported binding energies of the differently spaced Cu2+-dimers. It was also revealed that the activation energy of O2 release during the temperature programmed N2O decomposition reaction over an oxidized catalyst was generally low as compared to that in the TPD, and that the degree of reduction of the Cu2+-dimers was much greater in the N2O decomposition reaction than in the TPD at the same temperatures. These beneficial effects N2O decomposition on the reduction of the Cu2+-dimers were discussed in respect of the removal mechanism of the Cu2+-dimer bridged oxygen.  相似文献   

13.
This paper presents a computational laboratory that describes the ionic transport of chemical species in an electrochemical process. The system is modeled in 1D using a kinetic model type Butler–Volmer coupled with mass balance equations, i.e. Nernst–Planck formalism. This laboratory is intended to be a practical learning tool to study the deposition of chemical species, e.g. Cu2+, subject to the typical mass transfer mechanisms, i.e. diffusion, migration and convection. Sensitivity analyses are used to analyze the effect of each mass transport phenomena over the process reaction rate. The material showed in this paper is a section (laboratory) of two third-year courses in the Nanotechnology and Chemical Engineering undergraduate programs at the University of Waterloo. The pedagogical goals, learning experiences and students’ comments of this laboratory are presented in this work.  相似文献   

14.
Influence of Co2+ and Cu2+ on codeposition of Zn-Ni in acetate-chloride electrolyte have been investigated by the potentiodynamic stripping and XRD methods. In our earlier work it has been determined that the quantity of the η-phase in the alloy increased with decrease in the quantity of Ni when codeposition of Zn-Ni took place in acetate-chloride electrolyte. Meanwhile, both the quantity of Ni and that of the η-phase in the alloys decreased, when Co or Cu were incorporated in the alloy. Data of XRD have shown that the quantity of γ-phase in the alloy increased with increase in the quantities of Co2+ or Cu2+ in acetate-chloride electrolyte. When concentration of [Co2+] (0.15 mol dm−3) was approximately 19 times as high as that of [Cu2+] (0.008 mol dm−3), the influence of Co2+ and that of Cu2+ on the phase composition of alloys were nearly similar.  相似文献   

15.
The mechanism of the copper electrodeposition from acidic perchlorate electrolyte has been investigated with polarization and impedance methods. The impedance of the copper electrode in copper perchlorate electrolytes has been measured as a function of frequency for different Edc overpotential values and different copper(II) ion concentrations. The relations between the shape of a complex plane impedance display and the copper electrode potential values as well as the concentration of CuII ion were analysed in terms of the electrode reaction mechanism. It is shown, that the presence of the intermediate cuprous ion and its sinusoidal change of transport rate is one of the main factors determining the depressed shape of the impedance arc. The quantitative relation between the faradaic impedance and the rates of electrode reaction rates was established. The impedance arc was simulated with a set of parameters involving: rate constants, Tafel slopes, diffusion coefficient of cuprous ion and double layer capacitance. The rate constants were calculated with respect to ECu2 + Cu00 as: k10 = 6.50 × 10−5 cm s−1, k20 = 0.139 cm s−1, k−20 = 1.88 × 10−7 mol cm−2 s−1.  相似文献   

16.
Electroreduction kinetics of the peroxodisulfate anions on the electrochemically polished Bi(1 1 1) single crystal electrode has been studied by impedance spectroscopy. Influence of the electrode potential, reaction intermediates, base electrolyte and reactant concentrations on the kinetic parameters of electroreduction has been established. Systematic analysis of the fitting results demonstrates the noticeable influence of adsorption of the reaction intermediate or reactant on the electroreduction rate of the S2O82− anions at the Bi(1 1 1) electrode. In the region of so-called “current pits” in the cyclic voltammetry curves, obtained by rotating disc electrode method, the mixed kinetics, i.e. the adsorption and “true” charge transfer limited steps have been established by impedance spectroscopy.  相似文献   

17.
In this paper, we synthesized a novel type II cuprous sulfide (Cu2S)–indium sulfide (In2S3) heterostructure nanocrystals with matchstick-like morphology in pure dodecanethiol. The photovoltaic properties of the heterostructure nanocrystals were investigated based on the blends of the nanocrystals and poly(2-methoxy-5-(2′-ethylhexoxy)-p-phenylenevinylene) (MEH-PPV). In comparison with the photovoltaic properties of the blends of Cu2S or In2S3 nanocrystals alone and MEH-PPV, the power conversion efficiency of the hybrid device based on blend of Cu2S–In2S3 and MEH-PPV is enhanced by ~3–5 times. This improvement is consistent with the improved exciton dissociation or separation and better charge transport abilities in type II heterostructure nanocrystals.  相似文献   

18.
Removal of heavy metals from water and wastewaters has recently gained a great deal of attention due to their serious environmental problems. In this study, novel synthesized calcium carbonate nanoparticles, prepared in a colloidal gas aphron (CGA) system, were used as adsorbents for the removal of Cu2+ ions from aqueous solutions under different conditions. A developed pseudo-second-order (PSO) model well described the adsorption kinetics of the process. Langmuir and Freundlich adsorption isotherms have been examined and the maximum adsorption capacity from the Langmuir isotherm equation was found to be 666.67?mg Cu/g adsorbent. The effects of temperature, Cu2+ initial concentration, and CaCO3 dosage on the removal capacity were also investigated using the three-level Box–Behnken experimental design method. The response surface modeling results demonstrated that under certain experimental conditions (i.e., T?=?26°C, [Cu2+]?=?200?mg/L, and [CaCO3]?=?0.5?g/L), maximum removal capacity value (393.52?mg/g) was achieved.  相似文献   

19.
Equilibrium exchange isotherms were determined for the exchange of Cu2+ with NaZSM-5 at varying Cu(Ac)2 concentrations in solutions of constant volume and zeolite weight. At low Cu2+ levels the solid scavenged all the copper ions. When copper could be detected in the equilibrated solutions, overexchange was observed. The extent of overexchange was higher at pH 6 than at pH 4. These results were analyzed in relation to catalytic activity.On leave from the Central Institute for Chemistry, Hungarian Academy of Sciences, H1525 Budapest, Hungary.  相似文献   

20.
The electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy)32+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pKa being known. The nature of the rate determining steps changes depending on pH. Above pH ≈ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 103 s−1; below pH ≈ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pKa values of the ammonium ions. An ion pair formation between R3N+ and the mostly charged species present in solution is hypothesized to explain the contradictory experimental results concerning the reaction mechanism of the proton lost of the radical cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号