首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2 at.% Yb3+:Sr5(PO4)3F (S-FAP) polycrystalline transparent ceramic with asymmetric hexagonal structures has been synthesized by vacuum hot-pressing the nanoparticles prepared via coprecipitation method. X-ray diffraction results of powder and ceramic indicate that their phase peaks are well matched to the crystal structure of S-FAP. The average particle size of 35.5 nm has been exhibited by powder scanning electron microscopy images, and subsequent images of the ceramic cross section and surface morphology revealed a homogenous and compact microstructure with an average grain size of around 220 nm. The relationship between the optical loss caused by the scattering of anisotropic ceramic grains and the optical transmittance of ceramics was revealed in the hexagonal S-FAP transparent ceramics with different thicknesses. The in-line transmittance of hot-pressed ceramics with 1.5-mm thickness achieved 79.95% at 1100-nm wavelength, and the room-temperature absorption and emission spectra of Yb3+ in S-FAP polycrystalline ceramic matrix were measured using a spectrofluorometer.  相似文献   

2.
The asymmetric hexagonal Sr5(PO4)3F (S-FAP) crystal material is considered to be the most suitable solid state laser gain medium for small laser diode pumping in the future due to its large absorption, emission interface, and long fluorescence lifetime. However, the mediocre optical transmittance of S-FAP transparent ceramics and the degradation of luminescence properties due to the doping of Yb activated ions seriously hinder its application prospects. In view of this, a series of 0.02Yb, xLu: S-FAP (x = 0–0.02) transparent ceramics with excellent optical properties were synthesized by hot pressing sintering. The powder SEM results show that Lu doping has no obvious effect on the morphology, grain size, and dispersion of powder. The linear transmissivity curves show that the ultraviolet (200 nm) and visible (500 nm) transmissivity increase by 54 % and 17 %, respectively, with Lu doping compared with the undoped ceramic samples. The surface SEM of ceramics revealed that Lu3+ promoted the increase of ceramic grain size significantly. The emission spectrum and fluorescence decay curves at room temperature also show that the emission intensity and fluorescence lifetime of ceramic samples increase significantly with Lu co-doping.  相似文献   

3.
The Sr5(PO4)3F (S-FAP) crystal material is regarded as one of the most ideal optical materials for diode pumping owing to its huge absorption and emission cross sections and long fluorescence lifespan. In this investigation, S-FAP powders with varying Yb concentrations (0.1–5%) were produced using the coprecipitation method. Then a variety of S-FAP transparent ceramics with varying Yb content were fabricated using hot-pressing sintering. The crystalline phase structure of hexagonal Sr5(PO4)3F was verified by XRD analysis of the precursor powder and the final ceramics. According to the powder SEM, the average grain size and the long axial-radial ratio of powders are decreasing as the Yb3+ concentration increases. Thermal-etched surface SEM reveals nanostructured S-FAP transparent ceramics with an average grain size of less than 200 nm were synthesized. The highest transmittances of the 3% ceramics at 500 and 1100 nm wavelengths are 51% and 79.78%, respectively. The ceramic cross-sectional SEM demonstrated that porosity is the primary scattering source influencing the enhancement of optical characteristics. The absorption, emission, and fluorescence lifetimes of S-FAP transparent ceramics with varying Yb concentrations were tested and discussed, and the absorption and emission cross sections corresponding to the major peak were reported. Some physical parameters of this set of ceramic samples were shown, including thermal diffusivity, specific heat capacity, and thermal diffusivity data, as well as micro-hardness.  相似文献   

4.
Various content of neodymia Nd: Y2O3 (Nd: 0.5–5.0 at.%) transparent ceramics were fabricated by vacuum sintering. The prepared Nd: Y2O3 ceramics exhibit high transmittance (~80%) at the wavelength of 1100 nm. It is found that the increase in Nd concentration enhances the grain size growth, while decreases the phonon energy, which is benefit for improving both the luminescence quantum and up‐conversion efficiency. The thermal conductivity and thermal expansion coefficient of the transparent 1.0 at.% Nd: Y2O3 ceramic is 5.51 W·(m·K)?1 and 8.11 × 10?6 K?1, respectively. The hardness and the fracture toughness of the transparent ceramic is 9.18 GPa and 1.03 Mpa·m1/2, respectively. The results indicate that the Nd: Y2O3 transparent ceramic is a potential candidate material for laser.  相似文献   

5.
Highly transparent Nd‐doped calcium fluoride (Nd: CaF2) ceramics with different Nd‐doped concentrations were fabricated by hot‐pressed method using Nd: CaF2 nanopowders synthesized by coprecipitation method. SEM observations indicated that the average grain size of nanopowders was about 16–30 nm and the average grain size of the ceramics was between 200 nm and 1 μm. The grain boundaries of the ceramics were clean and no pores or impurities were detected. For 2‐mm‐thickness sample, the transmittance of the as‐fabricated 5 at.% Nd: CaF2 ceramic at 1200 nm was about 85%. The absorption coefficient and emission intensity of the Nd: CaF2 ceramics were measured and discussed. From the Nd: CaF2 ceramics fluorescent spectra and the decay curves, it was found that the fluorescent quenching effect became more evident with the increase in the Nd3+ ions‐doped concentration.  相似文献   

6.
We have developed CaF2:Nd transparent ceramics with varying doping concentrations of Nd by spark plasma sintering (SPS) and evaluated the optical, scintillation and dosimeter properties. The samples showed effective absorption peaks in the visible and near infrared regions due to the 4f-4f transitions of Nd3+. In scintillation properties, Nd3+ was also active and showed the 4f-4f radiative transitions of Nd3+ which appeared at 860 and 1064 nm under X-ray irradiation. In photoluminescence under 160 nm excitation, the samples showed emission peaks in the vacuum ultraviolet region due to the 5d-4f transitions of Nd3+. Furthermore, the samples showed thermally stimulated luminescence (TSL) exhibiting glow peaks at 100, 150 and 380 °C. Among the present samples the 5% Nd-doped sample showed the highest sensitivity which allowed to measure radiation dose from 0.1 to 1000 mGy with a good linear response.  相似文献   

7.
(Li, Ce, and Nd)-multidoped CaBi2Nb2O9 (CBN) Aurivillius phase ceramics were prepared via a conventional solid-state sintering route. The crystal structure including bond lengths and bond angles, microstructure, dielectric constant, DC resistivity, and piezoelectric properties were systematically investigated. Rietveld-refinements of X-ray results indicated that small quantity of (Li, Ce, Nd) doping (< 2.5 mol%) increases orthorhombic distortion, because of the smaller ionic radii of doping ions. However, orthorhombic distortion obviously decreased with increasing (Li, Ce, Nd) doping concentration from 5 to 25 mol%. The replacement of asymmetric A-site Bi3+ with 6s2 lone pair electrons by symmetric Li+, Ce3+ and Nd3+ ions decreased the orthorhombic distortion. The morphologies and electrical properties of sintered ceramics were tailored by the introducing (Li, Ce, Nd) multi-dopants. The improvement of piezoelectric properties of modified-CBN ceramics were attributed to decreasing grain sizes and morphotropic phase boundary (MPB). Ca0.85(Li0.5Ce0.25Nd0.25)0.15Bi2Nb2O9 (CBNLCN-15) ceramics had optimum properties, and d33 and Tc values were found to be ~ 13.1 pC/N and ~ 900 °C, respectively.  相似文献   

8.
Although rare earth neodymium (Nd) doping is common in Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) single crystals, it is rarely reported in PMN–PT ceramics. To explore the effect of Nd doping on PMN–PT ceramics, PMN–30PT:xNd3+ (x = 0%, 1%, 2%, and 3%) relaxor ferroelectric ceramics were fabricated using a solid-state method via two-step sintering. An enhanced piezoelectric charge coefficient (d33) of ∼870 pC/N and a high piezoelectric strain coefficient (d33*) of ∼1025 pm/V were achieved for x = 2%. Through Rayleigh analysis of polarization–electric field (PE) hysteresis loops under small electric fields, it was found that the dielectric property was mainly influenced by the intrinsic contribution (local lattice distortion). Furthermore, by investigating domain configurations, high piezoelectric properties were found to be associated with the domain size reduction and local structural heterogeneity. The results indicate that the PMN–30PT:xNd3+ ceramics is a promising material for electronic devices, and that rare earth Nd doping is an efficient strategy for improving the electronic performance of Pb-based relaxor ferroelectrics.  相似文献   

9.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   

10.
Fine-grained Nd3+:Lu2O3 transparent ceramic was developed by a two-step sintering method in flowing H2 atmosphere at T1 = 1720 °C for 15 min and T2 = 1620 °C for 10 h. The initial nanopowders were synthesized by a wet chemical processing with a uniform particle size of about 40 nm. The average grain size of the obtained 3 at.% Nd3+:Lu2O3 ceramic was 406 nm, which is ∼150 times smaller than the coarse-grained ceramic by normal H2 sintering. The emission intensity of the fine-grained transparent ceramic is 3 times of its coarse-grained counterpart, indicating higher Nd concentration without serious quenching in fine-grained transparent ceramic is possible, which agreed well with the prediction of an atomistic modeling work with YAG. EXAFS research demonstrated that with decreasing grain size, higher degree of disorder factor of the local environment of doped Nd atoms was discovered.  相似文献   

11.
High optical quality Nd3+ and Ce3+ co-doped SrF2 (Nd3+, Ce3+: SrF2) transparent ceramics were fabricated successfully by a simple hot-pressing (HP) method. The phase composition, in-line transmittance, absorption and emission spectra, as well as the detailed energy transfer of Nd3+ and Ce3+ were investigated. In addition, the Judd- Ofelt (J-O) theory was adopted to evaluate the luminescence property. The SrF2 transparent ceramic samples exhibited excellent optical properties, up to 82 % at 400 nm and 92.5 % at 1054 nm. The fracture surface of SrF2 transparent ceramic proved nearly dense microstructure and EDS results demonstrated uniform doping. The addition of cerium ions changed the crystal field environment of neodymium ions and shifted the emission peak to higher wavelengths at 796 nm excitation. Moreover, through the energy transfer process of Ce3+ to Nd3+, the occurrence of concentration quenching phenomenon was avoided under 298 nm excitation, and the emission cross-section of 4F3/24I11/2 increased to 3.1 × 10−20 cm2.  相似文献   

12.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

13.
Nd:LuAG transparent ceramics were fabricated by the solid-state reaction under vacuum sintering using SiO2 and MgO as sintering aids, commercial Lu2O3, Al2O3 and Nd2O3 as raw materials. The Nd doping concentration was adopted from 0 at. % to 1.3 at. %. The phase transformation and microstructure evolution of 1.3 at. % Nd:LuAG ceramics under different sintering temperature was investigated in detail. Meanwhile, the effects of Nd2O3 on the grain growth were surveyed. The results shown that when the samples were sintered at 1780?°C, the 1.3 at. % Nd:LuAG ceramic had clean gain boundary, and the transmittance of it reached 83.8% at 1064?nm.  相似文献   

14.
0.5–5.0?at.% Nd3+ doped (Ca0.94Gd0.06)F2.06 transparent ceramics were fabricated by vacuum hot-pressing sintering. The structural, spectroscopic and thermal properties of Nd:(Ca0.94Gd0.06)F2.06 transparent ceramics, as well as the influence of Nd3+ content on these properties were investigated. The as-fabricated ceramic samples exhibited high transparency and nearly pore-free microstructure. The absorption peaks located at 538?nm, 576?nm, 736?nm, 792?nm and 865?nm were attributed to the transitions from ground state to the excited states of Nd3+ ions, and the absorption coefficients increased linearly with Nd3+ content increasing. The emission band of the sample doped with 1?at.% Nd3+ concentration exhibited the highest emission intensity, while the lifetime decreased sharply with the increase of Nd3+ concentration. In addition, with Nd3+ content increasing from 0.5 to 5.0?at.%, the thermal expansivity coefficients increased slightly, while the thermal conductivity decreased from 4.21 to 2.36?W/m?K at room temperature.  相似文献   

15.
《Ceramics International》2023,49(5):7524-7533
YAG:Sm3+ (3–15 at.%) transparent ceramics, a promising cladding material for suppressors of parasitic oscillations at 1064 nm of YAG:Nd3+ lasers, have been prepared by solid-state reactive sintering at 1725 °C. The effect of samarium ions concentration on the microstructure and optical properties of YAG:Sm3+ sintered ceramics was studied for the first time. The solubility limit of samarium ions in the garnet matrix was found to lie within the range of 9–11 at.%. The spectroscopic characterization of YAG:Sm3+ (3–15 at.%) ceramic samples showed that the absorption coefficients corresponding to Sm3+ ions transitions increased linearly with increasing Sm3+ doping. Also, the increase in the concentration of Sm3+ ions contributes to the increase in the intensities of the satellites, leading to the broadening of the main spectral lines and implicitly to the increase of the absorption coefficient around 1064 nm. It was shown that YAG:Sm3+ ceramics doped with 9 at.% Sm3+ ions possess optical losses of 0.07 cm?1 at 808 nm and an optical absorption coefficient of 4.45 cm?1 at 1064 nm. The concentration dependence of the 4G5/2 level decay confirmed that the luminescence extinction is due to the energy transfer between the Sm3+ ions through cross-relaxation processes. All these results show that highly-doped YAG:Sm3+ (9 at.%) ceramics could be the best candidate for parasitic oscillation suppression in high-power YAG:Nd3+ lasers at 1064 nm.  相似文献   

16.
《Ceramics International》2023,49(5):7333-7340
Transparent Pr3+ doped Ca1-xGdxF2+x (x = 0, 0.01, 0.03, 0.06, 0.10, 0.15) polycrystalline ceramics with fine-grained microstructures were prepared by the hot-pressing method. The dependence of microstructure, optical transmittance, luminescence performances and mechanical properties on the Gd3+ concentrations for Pr3+:Ca1-xGdxF2+x transparent ceramics were investigated. The Gd3+ ions show positive effects on the microhardness of Pr3+:Ca1-xGdxF2+x transparent ceramics as a result of the decrease in the grain sizes. Excited by the Xenon lamp of 444 nm, typical visible emissions located at 484 nm, 598 nm and 642 nm were observed. Furthermore, the incorporation of Gd3+ ions can greatly enhance the photoluminescence performance owing to the improvement in the concentration quenching effect. The quenching concentration of Pr3+ ions in CaF2 transparent ceramics increased to 1 at.% as a result of the positive effect of Gd3+ codoping. The energy transfer mechanism of Pr3+ in the Pr3+:Ca1-xGdxF2+x transparent ceramics has been investigated and discussed.  相似文献   

17.
《Ceramics International》2023,49(15):24703-24711
Ce/Mn/Cr: Y3Al5O12 transparent ceramics with a pure garnet structure and a high color rendering index were prepared by a solid-state reaction method. Mn2+ and Cr3+ enhance the emission between 500 and 700 nm and expand the conventional Ce: YAG phosphors spectrum. The Ce3+ can work both, as activators and sensitizers, and the intense energy transfer from Ce3+ to Mn2+/Cr3+ is realized through the non-radiative and radiative processes. In the sample with the optimized doping concentration the high color rendering index (CRI) value of 75.3 can be achieved under a 450 nm laser diode excitation. The chromaticity coordinates can be tuned from (0.3125, 0.3232) to (0.2917,0.2851) by varying the doping concentration. With the increasing Mn2+/Cr3+ doping concentration, the lifetime of Ce3+, quantum efficiency and luminous efficiency are all gradually decreased. This work effectively offers a scheme for realizing the high color rendering performance of phosphor-converted transparent ceramics in white LEDs/LDs.  相似文献   

18.
Highly transparent Yb3+:Y2O3 ceramics with doping concentration up to 40.0 at.% had been fabricated successfully via hydrogen atmosphere sintering, where the raw powders were synthesized by co-precipitation method. The sintering temperature is about 600 °C lower than its melting temperature. SEM investigation revealed the average grain size of Yb3+:Y2O3 ceramics sintered at 1850 °C for 9 h was about 7 μm. The highest transmittance of as-prepared 1 mm thickness samples around wavelength of 1050 nm reached 80%, which is close to the theoretical value of Y2O3. The optical spectroscopic properties of Yb3+:Y2O3 transparent ceramics have also been investigated, which shows that it is a very good laser material for diode laser pumping and short pulse mode-locked laser.  相似文献   

19.
《Ceramics International》2023,49(20):32549-32557
It is of great significance to develop a kind of adsorbent which can adsorb and in-situ immobilize radionuclides from aqueous solution. Herein, new amino-functionalized mesoporous zirconia-silica (ZNSi) composites were prepared and applied to adsorb and in-situ immobilize the simulated trivalent actinides (Nd) from aqueous solution. The obtained ZNSi composites exhibited high Nd adsorption capacity (31.14 mg/g) owing to the formation of Nd(OH)3 via the reaction between Nd3+ and OH derived from the protonation of amino groups. The spent adsorbents with adsorbed Nd3+ were successfully changed to stable ZrSiO4-based glass ceramics by simple sintering treatment. The ZrO2 and Nd contents had great effect on the phase composition, microstructure evolution and aqueous stability of the obtained ZrSiO4-based glass ceramics waste forms. The immobilized Nd showed excellent aqueous stability (10−7 g m−2 d−1) due to the crystal lattice immobilization of ZrSiO4. Owing to the efficient adsorption and in-situ immobilization ability, the obtained ZNSi could be potential materials for radioactive wastewater treatment.  相似文献   

20.
The microstructures and optical properties of 5%6Li: Ce3xY3(1-x)Al5O12 (x = 0.001, 0.003, 0.05, 0.01, 0.02) transparent ceramics prepared by solid-state reaction and vacuum sintering were investigated in this paper. The results revealed that the grain size of 6Li,Ce:YAG ceramics at this ration conditions is 4 μm–20 μm. With the doping of Ce3+, the transmittance of 6Li,Ce:YAG ceramics decreases from 82% (x = 0.001) to 67% (x = 0.02) at 800 nm, and the intensity of transmittance peak at 340 nm and 460 nm increases. The emission peaks show red shift at around 530 nm with the increasing of Ce3+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号