首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because they have a high application potential in the thermal management of insulation environments, high-quality hexagonal boron nitride (h-BN)-based multiphase ceramics have been highly desired. However, so far, their synthesis is still full of challenges. Here, a kind of boron nitride nanosheets (BNNSs)/glass (GS) composite ceramics was prepared by a pressureless sintering method at a lower temperature of 900 °C. Due to a tightly bonded interaction between BNNSs and GS, the formed BNNSs/GS ceramics exhibit excellent multifunction performance. They have an outstanding compressive strength in the range of 19 ∼ 64 MPa and Vickers hardness ranging from 50 to 179 HV. For the BNNSs/GS ceramics with BNNS’s filling fraction of 90 wt%, their maximum side-surface TC values are 12.01 ± 0.18 W m−1 K−1 at 25 °C and 13.64 ± 0.37 W m−1 K−1 at 300 °C, respectively. In the ultra-high frequency range of 26.5 ∼ 40 GHz, the dielectric constant values of the BNNSs/GS ceramics are primarily between 2 and 3, and the corresponding loss tangent values are < 0.3. In addition, based on the remarkable integrity of their structure, these BNNSs/GS ceramics exhibit outstanding thermal-shock stability and prominent thermal management capacity during lots of heating/cooling-testing cycles. Therefore, we believe this kind of BNNSs/GS ceramic system will have great application potential in the new-generation thermal management and/or insulation packaging fields.  相似文献   

2.
Highly purified and crystallized hexagonal boron nitride (h-BN) powder is suitable as thermally conductive filler in resins. To obtain h-BN powder with large particle size, as well as high purity and crystallinity, high-temperature heat treatment over 1800°C in a N2 gas atmosphere is effective. The carbothermal reduction nitridation (CRN) involves the carbothermic reduction of boric oxide in a N2 gas atmosphere. In CRN using a CaO promoter, h-BN particles with high crystallinity can be obtained by a simple heat treatment process. CaO prevents the evaporation of boron oxide and aids in h-BN particle growth at high temperatures. However, CaB6 is formed as byproduct or impurity when CRN using the CaO promoter is performed at temperatures higher than 1800°C. In this study, the relationship between the products and the reaction temperature was clarified via thermodynamic considerations and experimentation. The results clarified the ideal reaction process of CRN using a CaO promoter to obtain highly purified and crystallized h-BN powder.  相似文献   

3.
ABSTRACT

Poly(ether-ketone)/hexagonal boron nitride (h-BN) composites reinforced with micrometer-sized h-BN particles were investigated. The composites exhibited glass transition temperature (Tg) and thermal stability over 160°C and 560°C, respectively. The melting point and peak crystallization temperatures of the composites decreased up to 17°C and 12°C, respectively. The linear CTE of the composites decreased both below and above the Tg. The storage modulus increased with increasing h-BN content at all temperatures (50–250°C). The composites possessed excellent dielectric properties with insignificant dispersion with increasing frequency. Thus, resultant composites are promising candidates for the printed circuit boards/electronic substrates.  相似文献   

4.
《Ceramics International》2017,43(13):10020-10025
Pyrolytic boron nitride ceramics were prepared on graphite substrates from borazine as the single source precursor by hot-wall chemical vapor deposition in deposition temperature range from 1300 °C to 1600 °C with a total pressure of 200 Pa. The chemical composition and the effect of deposition temperature on the morphology, phase, and structure of the pyrolytic boron nitride were investigated. A high purity product with stoichiometric B/N ratio is obtained. The deposition surface of the product exhibited a pebble-like structure, and the fracture surface showed an apparent laminar structure having a preferential (002) orientation parallel to the surface of the substrate at temperatures above 1400 °C. The product contained some turbostratic and amorphous boron nitride as evidenced from XRD and FTIR examinations. With the increase of deposition temperature, the crystallinity of the pyrolytic boron nitride increased with the turbostratic and amorphous boron nitride turned into hexagonal structure, and the crystallinity of the product became higher.  相似文献   

5.
Boron carbide is the third hardest material known, with a high melting point (2450 °C) and poor sintering ability. Therefore, boron carbide is a challenging material for shaping by conventional processing routes and can still be considered as unsuitable for commercial production of ceramics parts by additive manufacturing technologies. This work reports the first successful preparation of boron carbide ceramics fabricated by fused filament fabrication from a newly developed composite filament containing 65 wt% of micron-sized boron carbide powder dispersed in a thermoplastic binder. A commercial FFF desktop printer with a 0.40 mm nozzle was used for manufacturing of complex-shaped green bodies. Almost fully dense boron carbide ceramics with printed parts sized up to 4 centimeters and relative density higher than 96% after sintering were prepared. The DTA/TG analysis of composite filament and heat microscopy technique were used to set the debinding temperature program with critical temperature at 140 °C, due to the thermal decomposition of the binder. Microstructure SEM images after sintering showed excellent material homogeneity, while micro-CT images showed very well retained experimental shapes of collimator-like printed grids. The x-ray diffraction proved the presence of boron carbide phase with the free carbon phase at the level of about 1 wt% without significant influence on the measured hardness value of 29.88 ± 1.27 GPa.  相似文献   

6.
The microstructure of boron nitride film grown on Si (100) at various temperatures by a helicon wave plasma chemical vapor deposition using borazine as a precursor was investigated. The optimum substrate bias voltage for c-BN growth by the employed deposition process ranged from −200 to −400 V. HRTEM images revealed that the film included an interlayer of a-BN and h-BN followed by c-BN layer. A sufficient accumulation of compressive stress is required before c-BN growth. With increasing interlayer thickness and random orientation at high growth temperatures, residual compressive stress seems to decrease owing to an annealing effect. At the initial c-BN growth stage, the congruent growth of hexagonal and cubic phases occurs at low temperatures of 300 and 500°C; however, c-BN growth proceeds only after the formation of h-BN layer at the high temperature of 800°C. The hydrogen content in the BN films synthesized at lower temperatures was ∼8%, while that of the BN film synthesized at 800°C was ∼2.6%. In addition, with increasing the temperature, the decreasing tendency in c-BN IR mode FWHM indicates enhancement of c-BN crystallinity.  相似文献   

7.
Boron nitride nanocomposites assembled by nanosheets and nanotubes can exert multi-dimensional synergistic toughening and strengthening effects. This material is expected to be a high-efficiency reinforcement additive in advanced structural ceramics. In this study, we designed a universal method for synthesizing gram-scale boron nitride nanocomposites by annealing the precursor containing catalyst in chemical vapor deposition equipment under flowing ammonia, and a combined growth mechanism of surface-diffusion and solid-liquid-solid is proposed. The boron nitride nanosheets were initially formed by a surface-diffusion reaction between boron trioxide and ammonia at 1300°C. At elevated temperatures (1400°C-1500°C), the boron nitride nanotubes grew in-situ from the nanosheets in the presence of catalysts through a solid-liquid-solid mechanism, forming the desired boron nitride nanocomposite.  相似文献   

8.
In this paper, the novel boron nitride micron tubes (BNMTs) were used to reinforce commercial boron carbide (B4C) ceramics prepared via spark plasma sintering technology. The effects of the sintering parameters, sintering temperature, the holding time, and the BNMTs content on the microstructure and mechanical properties of B4C/BNMTs composite ceramics were studied. The results indicated that adding a proper amount of BNMTs could inhibit the grain growth of B4C and improve the fracture toughness of the B4C/BNMTs composite ceramics. The prepared composite ceramic sample with 5 wt% BNMTs at 1850°C, 8 min and 30 MPa displayed the best mechanical properties. The relative density, hardness, fracture toughness, and bending strength of the samples were 99.7% ± .1%, 35.62 ± .43 GPa, 6.23 ± .2 MPa m1/2, and 517 ± 7.8 MPa, respectively. Therein, the corresponding value of hardness, fracture toughness, and bending strength was increased by 10.3%, 43.59%, and 61.5%, respectively, than that of the B4C/BNMTs composite ceramic without BNMTs. It was proved that the high interface binding energy and bridging effect between boron carbide and BNMTs were the toughening principle of BNMTs.  相似文献   

9.
Results of a study on the sintering and crystallization of modified quartz ceramics are reported. The addition of boron nitride dopant at a concentration of 0.5–1.0 wt.% makes it possible to obtain a vacuum-dense quartz ceramics with a minor amount of crystallization in the sintering temperature range of 1250–1270°C. __________ Translated from Novye Ogneupory, No. 1, pp. 42–52, January, 2006.  相似文献   

10.
《Ceramics International》2020,46(11):18970-18975
This paper aims to study the impacts of h-BN additive on the microstructural features and sintering behavior of TiB2. For this objective, two different samples of monolithic TiB2 and TiB2-5 wt% h-BN were fabricated using spark plasma sintering (SPS) technique at 1900 °C. An external pressure of 40 MPa was exerted to the specimens during the sintering, and they were maintained at the maximum sintering temperature for 7 min. The characterization of as-fabricated ceramics was carried out using thermodynamical investigations, field emission SEM, and X-ray diffractometer. The thermodynamical and XRD studies revealed that the sintering process was non-reactive for both samples. However, introducing h-BN noticeably promoted the sinterability of TiB2 through activating the liquid phase sintering mechanism, and a near-fully dense composite was attained. The fractographical assessment manifested that the intergranular fracture was the dominant type in both monolithic and h-BN doped specimens. Finally, the quantitative image analysis indicated the role of h-BN in refining the microstructure of the doped TiB2 ceramic.  相似文献   

11.
Carbon/carbon-boron nitride (C/C-BN) composites were manufactured by adding hexagonal boron nitride (h-BN) powders into carbon fiber preform and a subsequent chemical vapor infiltration (CVI) process for deposition of pyrolytic carbon (PyC). Microstructure and oxidation behavior of carbon/carbon composites with 9?vol% h-BN (C/C-BN9) were studied in comparison to carbon/carbon (C/C) composites. Results showed that with the addition of h-BN powders, a regenerative laminar (ReL) PyC with higher texture was achieved. Note that the introduction of h-BN powder make great contributes to graphitization degree of PyC, leading to larger oxidation activation energy. Moreover, under an air atmosphere, h-BN started to oxidize above 800?°C, and generated molten boron oxide (B2O3) which prohibited oxygen diffusion by filling in pores, cracks and other defects. As these reasons mentioned above, after oxidation tests under an air atmosphere, mass losses of C/C-BN9 composites were lower than that of C/C composites at all test temperatures (600–900?°C), indicating that the oxidation resistance of C/C-BN9 composites is better than that of C/C composites.  相似文献   

12.
We have investigated the catalytic effect of boron nitride (h-BN) nanoparticles. The experiments prove that p-terphenyl can be synthesized from benzene at 400 °C in the presence of h-BN nanoparticles, thereby implying that the observed catalytic property of the h-BN nanoparticles may expand the application field of inorganic nanocrystals. The paper also discusses the mechanism of the structural rearrangement and oligomerization from benzene to p-terphenyl.  相似文献   

13.
Hexagonal boron nitride (h-BN) is a kind of functional ceramic material with excellent physical and chemical properties. This paper analyzes it from the aspects of mechanical, thermal, electrical and wetting properties. However, the high melting point of hexagonal boron nitride makes it difficult to prepare coating materials by traditional sintering process. This paper summarizes several processes for preparing h-BN composite coatings. Then, several application forms of h-BN composite coatings are reviewed according to the characteristics of h-BN composite coatings, and the future application prospects of h-BN coatings are forecasted in view of the existing problems.  相似文献   

14.
《Ceramics International》2019,45(16):20258-20265
In the present work anorthite-TCP composite ceramics was produced for the first time by the solid-state sintering process involving the mixture of local natural materials of phosphate and kaolin. Various samples were prepared by varying the kaolin content from 47 to 57 wt%. The composite ceramics were sintered in air at various temperatures ranging from 1250 °C to 1325 °C and characterized to determine the phase present, relative density, Vickers microhardness, chemical bonding of molecules and microstructural development. In general, all the samples exhibited a hybrid structure, comprising of anorthite and β-TCP as the major phases with a concomitant minor phases such as TTCP and/or gehlinite depending on the temperature and kaolin content. In addition, increasing kaolin content and sintering temperature were found to be effective in improving the densification and hardness of the sintered body. In particular, sample containing 57 wt% kaolin exhibited excellent densification at 1300 °C and 1325 °C, achieving above 97% dense bodies and highest hardness of about 6.5 ± 0.7 GPa. Microstructural investigation revealed that a dense structure was evident for these samples due mainly to enhanced particle coalescence during the liquid phase sintering, resulting in pore elimination and grain coarsening.  相似文献   

15.
Mullite/glass/nano aluminum nitride (AlN) filler (1–10 wt% AlN) composites were successfully fabricated for the low-temperature co-fired ceramics applications that require densification temperatures lower than 950°C, high thermal conductivity to dissipate heat and thermal expansion coefficient matched to Si for reliability, and low dielectric constant for high signal transmission speed. Densification temperatures were ≤825°C for all composites due to the viscous sintering of the glass matrix. X-ray diffraction proved that AlN neither chemically reacted with other phases nor decomposed with temperature. The number of closed pores increased with the AlN content, which limited the property improvement expected. A dense mullite/glass/AlN (10 wt%) composite had a thermal expansion coefficient of 4.44 ppm/°C between 25 and 300°C, thermal conductivity of 1.76 W/m.K at 25°C, dielectric constant (loss) of 6.42 (0.0017) at 5 MHz, flexural strength of 88 MPa and elastic modulus of 82 GPa, that are comparable to the commercial low temperature co-fired ceramics products.  相似文献   

16.
Textured hexagonal boron nitride (h-BN) matrix composite ceramics were prepared by hot pressing using 3Y2O3-5Al2O3 (mole ratio of 3:5) and 3Y2O3-5Al2O3-4MgO (mole ratio of 3:5:4) as liquid phase sintering additives, respectively. During the sintering process with liquid phase environments, platelike h-BN grains were rotated to be perpendicular to the sintering pressure, forming the preferred orientation with the c-axis parallel to the sintering pressure. Both h-BN matrix ceramic specimens show significant texture microstructures and anisotropic mechanical and thermal properties. The h-BN matrix ceramics prepared with 3Y2O3-5Al2O3-4MgO possess higher texture degree and better mechanical properties. While the anisotropy of thermal conductivities of that prepared with 3Y2O3-5Al2O3 is more significant. The phase compositions and degree of grain orientation are the key factors that affect their anisotropic properties.  相似文献   

17.
The recrystallization behaviour of micron-sized cubic boron nitride (cBN) was studied by analysing the grain size and morphology of samples treated at 8−16 GPa/1500–2200 °C. The results show that the recrystallization temperature of cBN under a pressure of 8 GPa is approximately 1650 °C and increases by approximately 100 °C with every 2 GPa increase in pressure. Once grain recrystallization starts, the grains grow abnormally quickly as the temperature rises, and the strengthening effects of grain refinement and defect structure are greatly weakened. The recrystallization behaviour of cBN at high pressure is helpful to understand the sintering mechanism and control the microstructure and mechanical properties of sintered polycrystalline cBN compacts. In addition, the melting curve for cBN under high pressure is inferred according to the empirical relationship between recrystallization temperature and melting temperature, and the phase diagram for boron nitride is revised based on this new melting curve.  相似文献   

18.
Bulk niobium diboride ceramics were consolidated by spark plasma sintering (SPS) at 1900°C. SPS resulted in dense specimens with a density of 98% of the theoretical density and a mean grain size of 6 μm. During the SPS consolidation, the hexagonal boron nitride (h‐BN) was formed from B2O3 on the powder particle surface and residual adsorbed nitrogen in the raw diboride powder. The room‐temperature strength of these NbB2 bulks was 420 MPa. The flexural strength of the NbB2 ceramics remained unchanged up to 1600°C. At 1700°C an increase in strength to 450 MPa was observed, which was accompanied by the disappearance of the secondary h‐BN phase. Finally, at 1800°C signs of plastic deformation were observed. Fractographic analysis revealed a number of etching pits and steplike surfaces suggestive of high‐temperature deformation. The temperature dependence of the flexural strength of NbB2 bulks prepared by SPS was compared with data for monolithic TiB2, HfB2 and ZrB2. Our analysis suggested that the thermal stresses accumulated during SPS consolidation may lead to additional strengthening at elevated temperatures.  相似文献   

19.
Needle-like nanocrystalline mullite powders were prepared through the molten salt process at the temperature of 900°C using coal gangue as raw material. Then, mullite-based composite ceramics were prepared by a conventional solid-state reaction between in situ synthesized mullite and Al2O3 powders. Effects of Al2O3 content and sintering temperatures on phase compositions, microstructure, and mechanical properties of the mullite-based composite ceramics were also studied. The results show that mullite content productivity increase from 72% to 95%, as the sintering temperature increased from 1480°C to 1580°C, which led to the improvement in the bulk density and flexural strength of the samples. The three-dimensional interlocking structure for mullite-based composite ceramics was obtained by the in situ solid-state reaction process. The maximum bulk density, flexural strength, and fracture toughness for the sample with 15 wt% Al2O3 content are 2.48 g/cm3, 139.79 MPa, and 5.62 MPa··m1/2, respectively, as it was sintered at the temperature of 1560°C for 3 h. The improved mechanical properties of mullite-based composite ceramics maybe ascribed to good densification and increased mullite phase content, as well as to the in situ three-dimensional network structure. Therefore, the results would provide new ideas for high-value utilization of coal gangue.  相似文献   

20.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号