首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study the effect of conventional zinc phosphate and zinc aluminum phosphate, which represents second generation of phosphate based anticorrosion pigments, on the performance of a polyurethane coating was studied. While zinc phosphate modification was proved to be effective on the corrosion resistance, EIS data facilitated the determination of the optimum pigment volume concentration in which the coating offered the most efficient protection. The superiority of zinc aluminum polyphosphate was attributed to the release of more inhibiting species, leading to the formation of a protective layer at the coating/substrate interface. In addition to the assessment of the impact of pigment content on the resistance of polyurethane primer to cathodic disbonding, the dependency of adhesion strength on the pigment type was also studied using pull-off test.  相似文献   

2.
Electrochemical impedance spectroscopy was employed to evaluate protective performance of the solvent-borne epoxy coatings pigmented with zinc aluminum polyphosphate as a representative of phosphate-based anticorrosion compounds at different Lambda values. Furthermore, the effective ratio of the pigment volume concentration (PVC) to the critical pigment volume concentration (CPVC) was determined. To compare the function of zinc aluminum polyphosphate and zinc phosphate incorporated into coatings, electrochemical noise method as well as electrochemical impedance spectroscopy was taken into consideration. The trend and magnitude of charge transfer, coating and noise resistances plus the amplitude of the current noise fluctuation indicated superiority of the modified pigment. In order to provide an insight into the mechanism by which anticorrosion pigments improve protective behavior of coating, performance of bare metals exposed to pigment extracts was assessed through taking advantage of electrochemical impedance spectroscopy and electrochemical noise method as well.  相似文献   

3.
In the field of protective coatings, zinc-free pigments are proposed as promising anticorrosion compounds due to their excellent environmentally-friendly profile. In this paper, cathodic disbonding performance of a solvent-borne epoxy primer incorporating strontium aluminum polyphosphate (SAPP) as a zinc-free phosphate-based anticorrosion pigment was investigated. Regardless of the applied potential, the presence of SAPP in the coating formulation caused slower growth of the delamination area in comparison to ZP. According to the data obtained from EIS and SEM/EDX, this behavior was attributed to locally controlled pH and the precipitated film restricting active zones available for electrochemical reactions.  相似文献   

4.
R. Naderi  M.M. Attar   《Electrochimica acta》2008,53(18):5692-5696
Undesirable anti-corrosion performance of zinc phosphate pigment, the classical chromate replacement, has led researchers to take modification into account. Polyphosphate-based anti-corrosion pigments as a result of modification of zinc orthophosphate have been found to function much more efficiently. This study aimed to evaluate performance of steel samples immersed in 3.5% NaCl aqueous solution-containing zinc aluminum polyphosphate (ZAPP) pigment extract compared to those involving conventional zinc phosphate (ZP) pigment extract and also no pigment (blank) using electrochemical tests such as electrochemical impedance spectroscopy (EIS) and linear polarization (LP) as well as surface analysis. Impedance spectra and polarization curves revealed two different trends, showing the superiority of ZAPP pigment. Based on the results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), presence of a precipitated layer on the surface was confirmed when steel sample was immersed into the solution-containing ZAPP.  相似文献   

5.
Electrochemical behavior of mild steel in the presence of zinc acetylacetonate (Zn(acac)2) and benzimidazole (BIMIDA) was evaluated by electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution and compared to zinc phosphate (ZP) pigment and zinc potassium chromate (ZPC) pigment extracts. Results showed superior performance of Zn(acac)2 and BIMIDA mixture (ZBM) compared to ZP pigment, while it introduced inferior inhibitive action compared to ZPC pigment. The epoxy coatings were formulated with ZBM as anticorrosive additive, ZP and ZPC pigments. The disbonding rate of coated steel follows the order: Blank > ZP > ZBM > ZPC. EIS results showed a complex film could be formed at the hole area for the coatings formulated with ZP, ZBM and ZPC. It is concluded that the stronger the complex film on the surface, the lesser the cathodic disbonding rate would be.  相似文献   

6.
The epoxy/polyamide coating was loaded with different pigment mixtures of the zinc phosphate (ZP), zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) pigments. The electrochemical impedance spectroscopy (EIS) and salt spray test were used to investigate corrosion inhibition performance of the coatings. The adhesion strengths of the coatings were measured by a pull-off test. Results revealed lower coating pull-off strength loss when the ZPA and ZAPP pigments were used. A significant decrease in number of blisters together with low pull-off strength loss and best corrosion inhibition properties were observed when the mixture of 80:20 of ZAPP:ZPA was used.  相似文献   

7.
R. Naderi 《Electrochimica acta》2009,54(27):6892-8733
This work intends to study inhibitive performance of organic and inorganic complexes of Zn(II) using electrochemical techniques along with surface analysis. In this regard, inorganic zinc aluminum polyphosphate pigment as modified zinc phosphate and zinc acetylacetonate and benzimidazole mixture representing organic replacement of zinc phosphate were employed. Through taking advantage of electrochemical impedance spectroscopy and DC polarization, two mentioned approaches were indicated to be efficient. Charge transfer resistance and corrosion current density values exhibited superiority of zinc aluminum polyphosphate and mixture of zinc acetylacetonate and benzimidazole compared to zinc phosphate and also zinc acetylacetonate and benzimidazole as individual inhibitors. Corrosion inhibition efficiencies calculated based on charge transfer resistance in consistent with those calculated from corrosion current density showed the following sequence; zinc aluminum polyphosphate > mixture of zinc acetylacetonate and benzimidazole > zinc acetylacetonate > zinc phosphate > benzimidazole. Showing film formation, surface analysis SEM/EDX confirmed the results obtained by electrochemical methods.  相似文献   

8.
This paper deals with the study of properties of anticorrosion pigments of varying chemical composition in epoxyester paints. Two type lines of paints were prepared. The first line comprised an anticorrosion pigment with a PVC concentration of 10% while the other line comprised an anticorrosion pigment with a PVC concentration = CPVC. The following nontoxic anticorrosion pigments were observed: zinc phosphate, zinc phosphomolybdate, calcium hydrogen phosphate, zinc phosphate modified with an organic corrosion inhibitor, strontium–aluminum polyphosphosilicate, zinc–aluminum polyphosphate, calcium metaborate, calcium ferrite, calcium borosolicate, and strontium chromate. The epoxyester primers were observed for the effect of the type of pigment on the anticorrosion properties. Anticorrosion efficiency was derived from tests in a condenser chamber and in a salt spray cabinet as well as from a test of chemical resistance of pigmented coatings. The evaluation of anticorrosion efficiency of inorganic nonmetal pigments was carried out by means of comparison with anticorrosion efficiency of metal dust.  相似文献   

9.
The cathodic disbonding of a thick, pigmented polyurethane coating from steel in 3.5 wt.% NaCl solution was studied by using an electrochemical AC impedance technique. Double-cylinder electrolyte cells were designed to separate the measurements of cathodic disbonding process from the influence of the impedance of an artificial defect. It was found that for a thick, pigmented polyurethane coating, the more important transport pathway of the reactive species is along the coating/steel interface rather than through the coating. There existed a delay time for the cathodic disbonding process, and cathodic polarization was not a predominant factor in determining the cathodic disbonding behavior in the early stages. The thick polyurethane coating, which was applied on a well sand-blasted steel surface, had excellent resistance to cathodic disbonding.  相似文献   

10.
Protective performance of the epoxy primer containing strontium aluminum polyphosphate (SAPP) as a zinc-free phosphate-based anticorrosion pigment is aimed to assess in this work through taking advantage of electrochemical impedance spectroscopy (EIS) and electrochemical noise method (ENM). The absence of zinc offers an excellent environmentally friendly profile to the class of inhibiting compound. In the pigment extracts, the electrochemical techniques revealed superiority of SAPP compared to the conventional zinc phosphate (ZP). The behavior was connected to precipitation of a protective layer on the surface exposed to SAPP. In comparison with ZP, the most effective SAPP content in the protective primer was then determined using EIS.  相似文献   

11.
The anticorrosive performance of two inhibitive pigments, zinc chromate and zinc phosphate, was compared using electrochemical impedance spectroscopy (EIS) and the scanning vibrating electrode technique (SVET) in pigment extracts in 0.1 M NaCl. It was observed that zinc was protected from corrosion in both extracts. In tests using hot dip galvanised steel painted with an epoxy primer incorporating the pigments, the SVET detected the anodic and cathodic distribution along the scribes, although no significant differences were observed among the various primers. On the contrary, EIS was able to distinguish processes occurring on the metal surface exposed by the scribe in different samples. For primers with anticorrosive pigment, a time constant at high frequencies was attributed to a layer of protective nature, probably formed by metal ions from the substrate and inhibitive ions leached from the anticorrosive pigments.  相似文献   

12.
Epoxy/polyamide coatings were loaded with different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments. Moreover, a coating containing zinc phosphate (ZP) was prepared as a reference sample. The coatings were applied on St-37 steel substrates and then were exposed to 3.5 wt% NaCl solution up to 35 days. The corrosion inhibition properties of the pigments extracts were studied on bare steel samples by a potentiodynamic polarization technique after 24 h immersion. The morphological properties and corrosion resistance of the coatings were investigated by scanning electron microscope (SEM), optical microscope, electrochemical impedance spectroscopy (EIS) and salt spray tests.  相似文献   

13.
The adhesion of electrodeposition (ED) paint on steel sheets for automobiles is highly influenced by the properties of the zinc phosphate coating which is used to improve its corrosion resistance. In the present study, a steel surface was pretreated with two types of zinc phosphate formulations followed by ED painting. The surface morphology, crystal plane, and porosity properties of phosphate coating on steel samples were studied by scanning electron microscope, X-ray diffraction, and electron probe microanalyzer, respectively. The corrosion resistance of painted samples was evaluated by an accelerated corrosion test as well as by electrochemical techniques like cathodic disbonding and AC?CDC?CAC tests. The phosphate coating enriched with a phosphophyllite structure showed small globular crystals with less porosity, whereas a hopeite structure showed coarse crystals with high porosity and comparatively thicker coating. The maximum corrosion resistance was observed in the painted sample, where the phosphate coating comprised a phosphophyllite structure. On the other hand, the painted samples phosphated with a predominantly hopeite structure showed inferior corrosion resistance performance. The unphosphated sample showed severe degradation in paint adhesion and corrosion resistance, which substantiates the importance of phosphate pretreatment.  相似文献   

14.
使用电化学方法对2种不同的醇溶型无机锌车间底漆进行了研究,结合浸泡以及盐雾的实验结果,发现2种车间底漆中锌含量对阴极保护时效有影响,但不是决定车间底漆防锈能力的唯一因素,锌含量与防锈颜料对于车间底漆的防锈性能有协同效果。其中,锌粉在早期提供阴极保护的作用,而防锈颜料在后期对基底提供防锈保护。对于锌粉含量相对较高的车间底漆,锌粉并不是从一开始就全部参加阴极保护作用,而是一部分具有激活潜力的锌粉在另一部分锌粉率先反应之后才由“未激活状态”转变为“激活状态”进而提供阴极保护的作用。  相似文献   

15.
康瑞瑞 《涂料工业》2021,51(2):54-60
采用中低相对分子质量树脂体系以及改性脂环胺固化剂,以化学、物理防锈颜料,体质填料为粉料体系制备无溶剂重防腐环氧涂料。通过 EIS、划线盐雾剥离、耐 3. 5% NaCl溶液和 10% NaOH溶液、混合溶液浸泡后的附着力,研究了涂层屏蔽性、耐碱性、湿态附着力。结果表明:铁钛粉、 绢云母粉、长石粉粉料体系涂层屏蔽性、耐碱性最佳;改性脂环胺固化剂屏蔽性好,湿态附着力性能优异;采用 EIS、划线盐雾剥离,耐 3. 5% NaCl溶液、 10% NaOH溶液浸泡以及混合溶液浸泡后附着力下降程度来评价涂层屏蔽性、耐碱性、湿态附着力性能具有一定的可参考性,研究结果与涂层耐阴极剥离实验性能正相关,可用于涂层耐阴极剥离性能的早期评价与判断。  相似文献   

16.
海洋环境下抗阴极剥离重防腐涂层的研究   总被引:4,自引:0,他引:4  
海洋环境中浸泡在海水中的涂层由于阴极保护而产生的剥离是涂层失效的主要原因之一。针对这种失效现象,讨论了影响涂层抗阴极剥离的主要因素并研制了适应于阴极保护的海洋浸泡涂层。涂料包含不同环氧值的环氧树脂基料、烷基酚醛胺固化剂以及相适应的颜填料。通过调整涂料的颜基比,得到抗阴极剥离性能优异的涂层,涂层能够满足海洋环境中涂层与阴极保护相结合使用的需要。  相似文献   

17.
Phenol electropolymerization to polyoxyphenylene coatings on phosphated steel and phosphated galvanized steel, normally impossible under the conditions allowing effective coating formation on either steel or zinc, is activated by cathodic deposition of zinc. A critical zinc amount has been found to be necessary to suppress electrochemical processes competitive with electropolymerization and induce coating formation with nearly 100% efficiency. SEM analysis showed that this critical amount of zinc corresponded to the formation of a low number of zinc nuclei emerging at the surface of the phosphate layer, on which, however, polyoxyphenylene was formed as a continuous coating. A.c. impedance tests showed that initial barrier properties are worse for coatings grown on zinc-plated phosphated samples than for those grown on steel from the same solutions. However, the long term corrosion resistance is much better in the former case, the improvement being largely associated with zinc cathodic protection  相似文献   

18.
A commercial zinc phosphate pigment was incorporated into polypyrrole (PPy) matrix during its electrochemical synthesis in order to improve the corrosion protection of polypyrrole on AISI 1010 steel. PPy/zinc phosphate composite films were synthesised in sodium salicylate medium with high current efficiency and containing 10% by weight of zinc and 4% by weight of phosphate. The influence of stirring and concentration of the electrolyte on the degree of pigment incorporation were investigated, as well as polymerisation time and applied current density. The morphology of the films was determined by scanning electron microscopy (SEM) and the distribution of pigment in the polymeric matrix was carried out by X-ray photoelectron spectroscopy (XPS). The PPy and PPy/zinc phosphate films were submitted to salt spray corrosion test, weight loss test and to electrochemical measurements like corrosion potential with time. In all tests, the composite films showed an enhancement in its protective action in comparison with PPy films.  相似文献   

19.
The effects of lamellar aluminum (Al) and micaceous iron oxide (MIO) pigments on the anticorrosion properties of an epoxy zinc-rich coating were studied. To this end, the epoxy zinc-rich coatings containing 70% w/w spherical Zn particles, 60% w/w Zn + 10% w/w MIO, and 60% w/w Zn + 10% w/w Al were prepared. The electrochemical noise (ECN), potentiostatic polarization technique, and salt spray test were employed in order to investigate the anticorrosion performances of the zinc-rich coatings. The zinc-rich coatings morphologies were studied by scanning electron microscope (SEM) before and after the salt spray test. The open-circuit potential values were also measured at different immersion times. Results showed that MIO particles could enhance the cathodic protection duration of the zinc-rich coating by enhancing its barrier properties and reducing the zinc particles oxidation rate. It was also shown that Al particles reduced zinc-rich coating sacrificial behavior at short immersion times and increased it at long immersion times. Unlike MIO particles, Al particles behaved both as barrier and sacrificial pigment.  相似文献   

20.
The anticorrosion performance of zinc aluminum phosphate pigment was evaluated using electrochemical impedance spectroscopy, the electrochemical noise method and DC polarization. The results of the electrochemical tests revealed the superiority of zinc aluminum phosphate in comparison with zinc phosphate in terms of inhibitive characteristics. The trend and magnitude of resistances and current density plus the appearance of the impedance spectra and the power spectral density of the current noise indicated deposition of a layer on the surface of samples exposed to ZPA extract. SEM/EDX analysis confirmed the precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号