首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, magnetic molecularly imprinted polymers (MMIPs) were used as novel adsorbents for selective adsorption of 3‐methylindole from model oil. The MMIPs were synthesized by precipitation polymerization and surface molecularly imprinted technique, using Fe3O4 nanoparticles as magnetically susceptible component, methylacrylic acid as dressing agent and functional monomer, ethylene glycol dimethacrylate as crosslinker, and 3‐methylindole as template molecule. The MMIPs were characterized by Fourier‐transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and thermogravimetric analyzer, respectively. The adsorption performances of MMIPs were investigated by batch adsorption experiments in terms of kinetics, isotherms, and selective recognition adsorption, respectively. The results indicate that MMIPs have high recognition ability and fast binding kinetics for 3‐methylindole. Meanwhile, the adsorption equilibrium time was about 2 h and the equilibrium adsorption amount was ~38 mg g?1 at 298 K. The heterogeneous MMIPs were modeled with pseudo‐second‐order and Langmuir isotherm equation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2859–2866, 2013  相似文献   

2.
Magnetic nanoparticles were attached to yeast by co‐precipitation reaction of FeCl3·6H2O and FeCl2·4H2O. Then, based on magnetite yeast composites (M@Y), the magnetic molecularly imprinted polymers (MMIPs) were synthesized for the selective recognition of beta‐cypermethrin (PP321). MMIPs were characterized by scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometer, Fourier transform infrared analysis, thermogravimetric analysis, and elemental analysis. MMIPs exhibited uniform morphology and magnetic property (Ms = 17.87 emu/g) and thermal stability. Batch mode adsorption studies were carried out to investigate the specific adsorption equilibrium, kinetics, and selective recognition. The Langmuir isotherm model was fitted to the equilibrium data slightly better than the Freundlich model, and the adsorption capacity of MMIPs was 39.64 mg/g at 298 K. The kinetic properties of MMIPs were well described by the pseudo‐second‐order equation. Hydrogen bonds between methacrylic acid and PP321 were mainly responsible for the adsorption mechanism. The MMIPs prepared were applied to the separation of PP321 from experimental samples successfully. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

4.
Three‐dimensionally ordered macroporous molecularly imprinted polymers (MMIPs) were prepared by a combination of the colloidal crystal template method and the molecular imprinting technique. Traditional bulk molecularly imprinted polymers (BMIPs) were simultaneously synthesized with the same recipe as the MMIPs by using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker and chloroform as porogen. SEM and Brunauer ? Emmett ? Teller measurements show that MMIPs have a more regular macroporous structure, a narrower macropore distribution and a greater surface area and porosity compared with BMIPs. The isothermal and kinetic data of both polymers can be fitted with the Freundlich model and a pseudo‐second‐order equation, respectively. Their specificities to the template molecules are also similar. However, the binding capability, adsorption rate coefficient and internal effective diffusion coefficient of the MMIPs are higher than for the BMIPs when the particle size is above 54 µm. © 2015 Society of Chemical Industry  相似文献   

5.
Novel norfloxacin (NOR) thermosensitive magnetic molecularly imprinted polymers (T-MMIPs) were prepared with functional monomer methacrylic acid (MAA), temperature-response monomer N-isopropylacrylamide (NIPAM) and cross-linking agent N,N′-methylenebisacrylamide (MBA) by the surface imprinting technique. The silica layer and imprinted polymers layer coated on the surface of Fe3O4 nanoparticles, forming double-shell structure. The morphology and composition of the thermosensitive magnetic molecularly imprinted polymers were investigated by transmission electronmicroscope (TEM), Fourier transform infrared spectrometry (FT-IR), thermogravimetic (TGA), vibrating sample magnetometer (VSM), powder X-ray diffraction (XRD) and nitrogen adsorption analysis. The phase behavior and thermosensitivity of T-MMIPs were studied by swelling experiments and adsorption tests at different temperatures. And the adsorption performance of T-MMIPs at 35 °C were evaluated by adsorption experiments, including kinetic, isotherm and selectivity tests. The maximum capacity of T-MMIPs at 35 °C was 52.85 mg g?1. In selective recognition tests, the T-MMIPs showed the highest selectivity for NOR among four components while the T-MNIPs showed similarly adsorption for all components. The prepared T-MMIPs have great potential in the detection and separation of norfloxacin due to the good temperature response, adsorption capacity, selectivity and reusability.  相似文献   

6.
Two molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10?4 and 6 × 10?5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g?1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles. © 2018 Society of Chemical Industry  相似文献   

7.
以通过溶胶-凝胶法自制的Fe3O4@壳聚糖(CTS)微球为载体,甲基橙(MO)为模板分子,采用水溶液聚合法制得磁性壳聚糖表面分子印迹聚合物(MMIPs)。通过SEM、XRD、FT-IR和VSM表征了MMIPs的结构和性能,并探究了其对MO的识别与选择性吸附特性。研究表明:与非印迹聚合物(NIMPs,饱和吸附量为20.56 mg/g)相比,在相同条件(pH值6.5、25℃)下,MMIPs对MO具有明显的特异性吸附能力,在60 min左右吸附饱和,饱和吸附量(Qe)可达113.16 mg/g;MMIPs对MO的吸附符合Langmuir等温吸附模型和准二级吸附动力学模型;在其他干扰染料的存在下,MMIPs的选择性系数(K)最高可达2.85,对MO具有选择识别性;此外,吸附完成后MMIPs可在磁场作用下快速分离,解吸附后循环使用5次,吸附率均在90%以上。  相似文献   

8.
An azobenzene‐containing molecularly imprinting polymer microsphere with photoresponsive binding properties toward 2,4‐dichlorophenoxyacetic acid (2,4‐D) was successful prepared via silica surface polymerization. The number‐average diameters of silica and imprinting polymer microsphere are 0.5 and 0.7 μm, respectively. The static adsorption, binding and selectivity experiments were performed to investigate the adsorption properties and recognition characteristics of the polymers for 2,4‐D. The equilibrium adsorptive experiments indicated that 2,4‐D‐SMIP(surface molecularly imprinted polymers) has significantly higher adsorption capacity for 2,4‐D than its nonimprinted polymers (SNIP).The binding constant Kd and apparent maximum number Qmax of the imprinted polymer were determined by Scatchard analysis as 0.054 mmol L?1 and 0.167 mmol g?1, respectively. The result of photoregulated release and uptake of 2,4‐D experiment demonstrated that azo‐containing SMIP can make use of light and change it into mechanical properties to release and take up the template molecules. It means that the SMIP can be controlled by light. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 869‐876, 2013  相似文献   

9.
利用共沉淀法制备了粉煤灰空心微珠磁性复合材料(MFACs),以乙烯基改性的MFACs为基质材料,利用乳液聚合法制备磁性粉煤灰空心微珠表面印迹聚合物(MMIPs)。通过SEM、FT-IR、TGA、XRD和VSM等方法对其物理化学性质进行表征,其比表面积123.65 m2·g-1,且具有较好的热稳定性、超顺磁性(Ms=12.155 emu·g-1)。通过系列吸附实验研究表明,Langmuir等温模型能较好地拟合MMIPs对头孢氨苄(cefalexin,CFX)的吸附平衡数据,25℃时MMIPs的单分子层吸附容量为69.55 mg·g-1。准二级动力学模型能较好地描述MMIPs对CFX吸附动力学行为,选择性实验研究表明,MMIPs对CFX具有较好地选择识别性。结合高效液相色谱分析技术,MMIPs已成功应用于环境样品中痕量CFX的分离/富集。  相似文献   

10.
Molecularly imprinted polymers are being proposed for the development of novel biorecognition elements for active components. In this study, an imprinted chitosan coated silica nanoparticles (I‐CS@SiO2) polymer was prepared by a simple procedure, in which, naringin (NG) with antioxidant activity, acted as a template, silica as a matrix and CS as a functional polymer. The binding properties were discussed by the equilibrium binding experiment method. Experiments show that the adsorption characteristics of I‐CS@SiO2 are better than that of nonimprinted polymer. It exhibited high selectivity for NG when compared with the nonimprinted polymer, with an imprinting factor α of 1.74. Scatchard analysis of the I‐CS@SiO2 indicated that there was a class of binding sites during the I‐CS@SiO2 recognizing NG: The dissociation constant of KD is 0.016 mmol L?1, the maximum apparent binding capacity of Bmax is 6.56 μmol g?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40491.  相似文献   

11.
Two clozapine (CLZ) imprinted polymers were prepared by bulk and precipitation methods. Methacrylic acid and ethylene glycol dimethacrylate (EDMA) were used as functional and crosslinker monomers, respectively. The mean diameter and particle size distribution of the imprinted (P‐MIP) and nonimprinted (P‐NIP) particles obtained in precipitation method were examined. A conventional batch‐adsorption test was applied for characterization of CLZ–polymer interaction. Dissociation constant (KD) and maximum binding sites (Bmax) were calculated using Scatchard analysis. To evaluate the recognition properties of polymers, phenytoin (PTN) binding to each polymer was also studied and compared to CLZ. The imprinting factor (IF) and selectivity factor (α) were also determined for each polymer. Average diameter and polydispersity of P‐MIP were 925 nm and 0.17, respectively. The data for P‐NIP were 1.05 μm and 0.18. The KD, IF, and α values calculated for P‐MIP were 0.45 μM, 3.26, and 17.43, respectively. The data for imprinted polymer, prepared by bulk polymerization (B‐MIP), were 14.5 μM, 1.95, and 3.67. These results demonstrated that precipitation polymerization is a more convenient, more effective, and more reproducible method than bulk polymerization for the synthesis of uniformly sized micron and submicron‐imprinted polymer particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A polyacrylate tetracycline (TC) selective microporous molecularly imprinted polymer was prepared in three different porogenic solvents (chloroform, acetonitrile, and methanol) via precipitation polymerization, using methacrylic acid monomer, ethylene glycol dimethacrylate crosslinker, and TC as template. In all three solvents this method produced microporous particles in the scale range (200–400 nm), simply, quickly, cleanly, and in good yield. The effect of polarity of porogenic solvents on binding capacity was investigated. The imprinted polymer prepared in chloroform gave much higher binding capacity (KD = 198.6) for TC than the polymers prepared in acetonitrile (KD = 133.2) or methanol (KD = 104.7). The selectivity of imprinted polymers was evaluated by rebinding other structurally similar compounds. The results clearly indicated that the imprinted acrylate polymer exhibits an excellent selectivity toward TC, and has better ability to control the release of TC than the non‐imprinted polymer.© 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide – CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu2+ was obtained for the Cu2+/Cd2+, Cu2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir–Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption–desorption cycles using 1.8 mol L−1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.  相似文献   

14.
A Fe(III) ion‐imprinted silica gel polymer functionalized with phosphonic acid groups (IIP‐PA/SiO2) was prepared with surface imprinting technique by using Fe(III) ion as template ion, grafted silica gel as support, and vinylphosphonic acid as functional monomer. The polymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, and thermogravimetric analysis. The synthesized imprinted silica gel polymer was used as a sorbent for Fe(III) adsorption. The adsorption properties, such as the effect of solution pH, adsorption kinetic, adsorption isotherm, adsorption selectivity as well as the regeneration of sorbent were studied. The results showd that the prepared sorbent (IIP‐PA/SiO2) had a short adsorption equilibrium time (12 min) and high adsorption capacity (29.92 mg g?1) for Fe(III) at the optimal pH of 2.0. The selectivity coefficients of the sorbent for Fe(III) in presence of Cr(III), Mn (II), and Zn(II) were 51.76, 27.86, and 207. 76, respectively. Moreover, the adsorption capacity of the prepared sorbent did not decrease significantly after six repeated use. Thus, the prepared ion‐imprinted silica gel polymer was a promising candidate sorbent for the selective adsorption of Fe(III) from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45165.  相似文献   

15.
A novel molecularly imprinted polymer (MIP) designed by molecular dynamics (MD) simulations was successfully prepared with norfloxacin as a template molecule, methyl acrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a crosslinker. According to the theoretical prediction and experimental preparation methods, three kinds of molecular imprinting materials were designed and synthesized with MD simulations and molecular imprinting technology. The best ratio of the template to the functional monomer to the crosslinker was 1:8:40 in these studies. The experimental results illustrate that the MD simulations were credible in compounding the components of the MIPs. The structure of the prepared polymers were characterized with various methods. To analyze the adsorption performances, many kinds of static adsorption tests, including kinetic, isotherm, and selectivity tests, were used. The results indicate that the novel adsorbents conformed to the pseudo–second‐order kinetic equation and followed the Langmuir isotherm model. The adsorption amounts of MIP2 at a ratio of 1:8:40 were about 29.35 mg/g at 298 K. The selective adsorption and reusable performance of norfloxacin were excellent. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42817.  相似文献   

16.
A new highly selective photocatalyst (RhB‐MIP/TiO2) was successfully prepared by surface molecular imprinting technique using rhodamine B (RhB) as template molecule. The adsorption kinetics show RhB‐MIP/TiO2 possessed fast adsorption rate, and adsorption behavior followed the pseudo‐second‐order kinetics. The static binding experiments revealed RhB‐MIP/TiO2 displayed strong affinity and high adsorption capacity for RhB. Moreover, the equilibrium adsorption rate of RhB‐MIP/TiO2 for RhB can be well fitted by the Langmuir isotherm model. The thermodynamics parameters indicated that the binding system of RhB‐MIP/TiO2 was endothermic and spontaneous. Compared with non‐imprinted photocatalyst (NIP/TiO2), RhB‐MIP/TiO2 exhibited excellent selectivity toward RhB, whose selectivity coefficient for RhB relative to rhodamine 6G (Rh6G) was 2.99. Selective photocatalytic degradation experiments indicated that the apparent rate constant for the photodegradation of RhB over RhB‐MIP/TiO2 is 0.0212 min?1, being 216% of that over NIP/TiO2 (0.0098 min?1). Therefore, RhB‐MIP/TiO2 exhibited higher photocatalytic selectivity toward RhB. The prepared photocatalyst RhB‐MIP/TiO2 has a promising perspective in industrial wastewater treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40890.  相似文献   

17.
BACKGROUND: There are few reports on erythromycin molecularly imprinted polymers (MIPs) used as HPLC stationary phase and solid phase extraction matrices. These imprinted polymers are prepared by bulk polymerization, which is tedious and time‐consuming, and they are irregular and possess poor reproducibility and low binding capacity. In this study, molecularly imprinted microspheres for erythromycin were prepared by aqueous suspension polymerization for the first time. RESULTS: Imprinted microspheres for erythromycin were prepared using suspension polymerization in which 1.5% PVA‐water solution is used as continuous phase, and chloroform solution containing erythromycin, methacrylic acid and crosslinker is used as disperse phase. The composition of disperse phase is optimized, and the optimum molar ratio of erythromycin to methacrylic acid was 1:5. Selectivity analysis revealed that the imprinted microspheres can specifically recognize erythromycin from its structure analogues. The binding mechanism between erythromycin and methacrylic acid was investigated by UV‐Vis spectrophotometry. Adsorption kinetics and the adsorption isotherm of the imprinted microspheres indicate that erythromycin can be adsorbed rapidly by the imprinted microspheres and the maximum theoretical static binding capacity is 128.6110 mg g?1. The imprinted microspheres were used to extract erythromycin from a milk sample and a high recovery rate was obtained. CONCLUSION: Molecularly imprinted microspheres for erythromycin were uniform and possess high adsorption capacity and excellent selectivity. They are therefore a promising extraction and chromatographic media. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Highly selective surface molecularly imprinted polymer (DHQ-MPS/SiO2) for dihydroquercetin (DHQ) was synthesized by molecular imprinting technique on modified silica particles for solid-phase extraction (SPE). The prepared DHQ-MPS/SiO2 was characterized by Fourier transform infrared spectrometer (FT-IR) and transmission electron microscope (SEM) techniques. Interactions between the functional monomer and template were observed with UV-visible spectroscopy of the solutions of these components as well. The results indicated that a 1:2 molecular complex was formed between DHQ and 2-vinylpridine. The static adsorption experiments indicated that DHQ-MPS/SiO2 had significantly higher adsorption capacity for DHQ than its non-imprinted polymers (NIP-MPS/SiO2) and revealed that the Langmuir equation fitted the adsorption isotherm data. The thermodynamics parameters indicated that the binding system for DHQ-MPS/SiO2 was endothermic and entropy was gained and was spontaneous. The selectivity coefficients of DHQ-MPS/SiO2 for DHQ in relation to competition species apigenin (API) and rutin (RUT) were 2.1 and 4.9, respectively, which suggested that DHQ-MPS/SiO2 had high recognition selectivity and binding affinity for the template DHQ. The application of DHQ-MPS/SiO2 as a selective sorbent material for extraction of DHQ from Prince’s-feather Fruit sample showed that DHQ was well separated and the recovery rate was 79.6%, demonstrating the suitability of the technique for the extraction in real samples.  相似文献   

19.
Ion imprinted polymers (IIPs) for selective extraction of Ag(I) ions from aqueous solution were synthesized by a precipitation polymerization method using two functional monomers, 4-vinyl pyridine (4-VP) and 1-vinyl imidazole (1-VID), and N,N-ethylene bisacrylamide (EBAm) as the cross linker. Batch adsorption experiments were carried out as a function of Ag(I) imprinted polymer amount, agitation time, pH and initial Ag(I) concentration. The kinetic studies indicated that pseudo-second-order kinetic model best describes the adsorption behavior, while the adsorption data correlated well with the Langmuir isotherm. Furthermore the selectivity studies revealed that the ion imprinted polymers had a higher absorption capacity and a higher selectivity, for the Ag(I) ions, than the control polymers.  相似文献   

20.
Molecularly imprinted polymers (MIP) with high performance in selectively recognizing bisphenol A (BPA) were prepared by using a novel and facile surface molecular‐imprinting technique. Vinyl‐functionalized, monodispersed silica spheres were synthesized by a one‐step emulsion reaction in aqueous solution. Then, BPA surface molecularly imprinted polymers (SMIP) were prepared by polymerization with 4‐vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. Maximal sorption capacity (Qmax) of the resulting SMIP was up to 600 μmol g?1, while that of nonimprinted polymers was only 314.68 μmol g?1. Kinetic binding study showed that sorption capacity reached 70% of Qmax in 20 min and sorption equilibrium at 80 min. SMIP had excellent accessibility and affinity toward BPA, for the selectivity coefficients of SMIP for BPA in respect to phenol, p‐tert‐butylphenol, and o‐phenylphenol were 3.39, 3.35, and 3.02, respectively. The reusage process verified the SMIP owning admirably stable adsorption capacity toward BPA for eight times. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号