首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
A purified alkaline thermotolerant bacterial lipase from Bacillus coagulans BTS‐3 was immobilized on nylon‐6 matrix activated by glutaraldehyde. The matrix showed ~ 70% binding efficiency for lipase. The bound lipase was used to perform transesterification in n‐heptane. The reaction studied was conversion of vinyl acetate and butanol to butyl acetate and vinyl alcohol. Synthesis of butyl acetate was used as a parameter to study the transesterification reaction. The immobilized enzyme achieved ~ 75% conversion of vinyl acetate and butanol (100 mmol/L each) into butyl acetate in n‐heptane at 55°C in 12 h. When alkane of C‐chain lower or higher than n‐heptane was used as an organic solvent, the conversion of vinyl acetate and butanol to butyl acetate decreased. During the repetitive transesterification under optimal conditions, the nylon bound lipase produced 77.6 mmol/L of butyl acetate after third cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Isolation of a novel microbial lipase (EC 3.1.1.3) having specific catalytic activity for the synthesis of optically pure 2‐O‐benzylglycerol‐1‐acetate, the building block for the preparation of many β‐blockers, phospholipase A2 inhibitors and other biologically active compounds was the aim of this investigation. A Pseudomonas (strain G6), recently isolated from soil, produced an extracellular lipase. SDS–PAGE analysis showed that the lipase protein was a hexamer. The molecular weight of the sub‐units of the lipase protein were 10, 19, 29, 30, 47 and 53. The catalytic activity of the lipase was exploited for the synthesis of 2‐O‐benzylglycerol‐1‐acetate from 2‐O‐benzylglycerol through transesterification using vinyl acetate as acylating agent. High selectivity of the lipase towards the monoacetate product was demonstrated. A 97% enantiomeric excess (ee) of S(+)‐2‐O‐benzylglycerol‐1‐acetate was obtained when the reaction was carried out at room temperature with shaking. The lipase was highly active in anhydrous organic microenvironments and in non‐polar organic solvents with log P values above 2.5. © 2002 Society of Chemical Industry  相似文献   

3.
A new superabsorbent copolymer, poly(sodium acrylate‐co‐sodium 1‐(acryloyloxy) propan‐2‐yl phosphate) [P(SA‐co‐SAPP)], was synthesized by a novel prepared monomer, 1‐(acryloyloxy) propan‐2‐yl phosphoryl dichloride. The swelling properties of the superabsorbent were investigated by comparison with poly(sodium acrylate) (PSA) and the copolymer of poly(sodium acrylate‐co‐2‐hydroxypropyl acrylate) [P(SA‐co‐HPA)]. The results showed that (1) the superabsorbent containing sodium 1‐(acryloyloxy) propan‐2‐yl phosphate had higher water absorbency at general testing conditions; (2) the swelling properties of P(SA‐co‐SAPP) and PSA were obviously influenced by pH of solutions, which were different from that of P(SA‐co‐HPA); (3) the swelling process and the saturated water absorbency of all superabsorbents were remarkably affected by cations, especially multivalent ones, while barely affected by anions. POLYM. ENG. SCI., 47:728–737, 2007. © 2007 Society of Plastics Engineers.  相似文献   

4.
Two bis‐chalcone derivatives, (2E,6E)‐2,6‐bis[(thiophen‐2‐yl)methylene]cyclohexanone ( C1 ) and (2E,6E)‐2,6‐bis[(furan‐2‐yl)methylene]cyclohexanone ( C2 )‐based electrochromic (EC) nanofibers were produced in the presence of poly(methyl methacrylate) (PMMA) as supporting polymer using the electrospinning technique. The scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy were used to examine morphology and chemical compositions of nanofibers before and after stability test. SEM images of the obtained smooth and bead‐free nanofibers before the stability test showed that both bis‐chalcone derivatives were homogeneously dispersed on the surface of the electrospun nanofibers. Nanofibers of bis‐chalcone derivatives were characterized with Fourier‐transform infrared spectroscopy. The electrochemical and EC properties of these bis‐chalcone derivatives were investigated. The C1 ‐PMMA nanofiber‐based electrochromic device (ECD) showed higher ΔTmax (41.47%) than that of the C2 ‐PMMA nanofiber‐based ECD (4.67%) during coloration/bleaching at 715 nm. The switching times for coloration and bleaching of C1 ‐PMMA nanofiber‐based ECD were found to be 4.42 and 1.12 s, respectively, and the coloration efficiency was 136.18 cm2/C. Repeated cyclic voltammograms and 1000 cycles of chronoamperometric measurements of the bis‐chalcone derivatives indicated that ECDs have long‐term redox stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46010.  相似文献   

5.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

6.
In accordance with a novel strategy for generating the 2‐benzazepine scaffold by connecting C6–C1 and C3–N building blocks, a set of 5‐phenylsulfanyl‐ and 5‐benzyl‐substituted tetrahydro‐2‐benzazepines was synthesized and pharmacologically evaluated. Key steps of the synthesis were the Heck reaction, the Stetter reaction, a reductive cyclization, and the introduction of diverse N substituents at the end of the synthesis. High σ1 affinity was achieved for 2‐benzazepines with linear or branched alk(en)yl residues containing at least an n‐butyl substructure. The butyl‐ and 4‐fluorobenzyl‐substituted derivatives, (±)‐5‐benzyl‐2‐butyl‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 b ) and (±)‐5‐benzyl‐2‐(4‐fluorobenzyl)‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 m ), show high selectivity over more than 50 other relevant targets, including the σ2 subtype and various binding sites of the N‐methyl‐D ‐aspartate (NMDA) receptor. In the Irwin screen, 19 b and 19 m showed clean profiles without inducing considerable side effects. Compounds 19 b and 19 m did not reveal significant analgesic and cognition‐enhancing activity. Compound 19 m did not have any antidepressant‐like effects in mice.  相似文献   

7.
The stereoselective synthesis of L ‐menthol is an attractive process in the flavor and fragrance industry. One promising way to obtain optically pure menthol is the enantioselective hydrolysis of menthol esters under enzymatic catalysis. We developed an effective and highly enantioselective method for the synthesis of L ‐(−)‐menthol (>99% EE) by hydrolyzing the key industrial starting compound, d, l ‐menthyl benzoate. The enzyme of choice was the lipase from Candida rugosa (CRL). While commercially available preparations of this lipase showed only minor selectivity (E=15), excellent enantiomeric purity (E>100) was achieved using the heterologously expressed isoenzyme LIP1.  相似文献   

8.
This study investigates the curing kinetics, thermal properties and decomposition kinetics of cresol novolac epoxy (CNE) with two curing agents, 2‐(6‐oxido‐6H dibenz(c,e)(1,2) oxaphosphorin‐6‐yl)‐1,4‐benzenediol (ODOPN), and phenol novolac (PN). In comparison with the conventional PN system, introducing ODOPN, a phosphorus‐containing bulky pendant group, into CNE increases Tg by 33°C, char yield from 30% to 38%, and LOI from 22 to 31. The DSC curing study reveals that the Ea of the CNE/ODOPN epoxy can be obtained by Kissinger's method. The resulting Ea values indicate that the catalytic effect of EMI is insignificant on CNE/ODOPN but is marked on CNE/PN, whose Ea was reduced from 131.5 to 75.6 KJ/mole. This result may be caused by the fact that the symmetric diol attached to the 1 and 4 positions of the naphthalene ring in ODOPN sets up a steadily resonating structure and inhibits the catalytic action. Further investigating the conversion ratio with curing temperature yielded experimental data that agreed closely with Kaiser's model. The orders of the autocatalyzed reaction, m, and the crosslinking reaction, n, are close to 0.5 and 1.0, respectively, independently of the scan rate. Finally, the TGA decomposition study by Ozawa's method demonstrates that the mean Ea declines with the phosphorus content, because the easy decomposition of the phosphorus compound in the initiation stage facilitates the formation of an insulating layer. However, results in this study further reveal an increasing tendency for Ea with decomposition conversion for an ODOPN/PN mixture with the ODOPN content of over 50%, probably because of the retardation of gas diffusion by the insulating layer of phosphorus compound.  相似文献   

9.
The selective synthesis of (Z)‐ or (E)‐3‐aryl/vinyl/alkylidene‐isoindolones, and 2‐benzopyran derivatives from o‐(1‐alkynyl)benzamides by means of a suitable choice of bases or silver catalysis is described.  相似文献   

10.
BACKGROUND: Enzymes may exhibit enhanced activity, stability and selectivity in ionic liquids, depending on the properties of the liquid. The physical–chemical properties of ionic liquids, however, may be modified by altering the anion or cation in the ionic liquid. This feature is a key factor for realizing successful reactions. In this work, a new ionic liquid, 1‐isobutyl‐3‐methylimidazolium hexafluorophosphate (abbreviated as [i‐C4mim][PF6]), was synthesized and investigated as a novel medium for the transesterification reaction of 2‐phenylethanol with vinyl acetate catalyzed by pseudomonas capaci lipase. As contrasts, the reaction was also carried out in two reference solvents; the isomeric ionic liquid [i‐C4mim][PF6], 1‐butyl‐3‐methylimidazolium hexafluorophosphate (abbreviated as [C4mim][PF6]), and hexanes. RESULTS: As reaction medium, [i‐C4mim][PF6] was best among the three solvents. The initial reaction rate, the equilibrium conversion of 2‐phenylethanol and the half‐lifetime of the lipase in [i‐C4mim][PF6] medium were about 1.5, 1.2 and 3‐fold that obtained in [C4mim][PF6] medium, respectively. The lipase in [i‐C4mim][PF6] medium was recycled 10 times without substantial diminution in activity. CONCLUSION: The ionic liquid [i‐C4mim][PF6] has good biocompatibility, and can be used widely as green media in various biocatalysis reactions to improve the activity and stability of enzymes. Besides hydrophobicity and nucleophilicity, the spatial configuration of ionic liquids is also considered a key factor effecting the behaviour of the enzyme in ionic liquids. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9‐DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α‐1‐C‐propargyl‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β‐glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX‐28 (α‐1‐C‐[(1‐(3‐trimethylsilyl)propyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol), bearing the 3‐trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM . Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non‐competitive inhibitors, with the exception of the mixed‐type inhibitor DIX‐28.  相似文献   

12.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

14.
In 1974, (E)‐1‐nitropentadec‐1‐ene, a strong lipophilic contact poison of soldiers of the termite genus Prorhinotermes, was the first‐described insect‐produced nitro compound. However, its biosynthesis remained unknown. In the present study, we tested the hypothesis that (E)‐1‐nitropentadec‐1‐ene biosynthesis originates with condensation of amino acids with tetradecanoic acid. By using in vivo experiments with radiolabeled and deuterium‐labeled putative precursors, we show that (E)‐1‐nitropentadec‐1‐ene is synthesized by the soldiers from glycine or L ‐serine and tetradecanoic acid. We propose and discuss three possible biosynthetic pathways.  相似文献   

15.
The synthesis of 5‐[(acetylhydrazono)‐(4‐chlorophenyl)‐methyl]thiophen‐2‐yl ester of the trifluoromethanesulfonic acid ( 2a ) and its N‐methyl derivative 2b was attempted. Oxidation of 2‐thiophene boronic acid to 2‐hydroxythiophene and in situ reaction there of with triflic anhydride yielded the hitherto unknown thiophene‐2‐yl ester of the trifluormethanesulfonic acid ( 6 ) which was transformed under Friedel‐Crafts conditions into 5‐(4‐chlorobenzoyl)‐thiophene‐2‐yl ester of the trifluoromethanesulfonic acid ( 3 ). Reaction of 3 with acetyl hydrazine resulted in the formation of the title compound 2a , albeit in low yield. The conversion of N′‐[(5‐bromothiophen‐2‐yl)‐(4‐chlorophenyl)‐methylen]‐N‐methylhydrazide ( 4b ) via boronic acid into 5‐[(acetylmethylhydrazono)‐(4‐chlorophenyl)‐methyl]thiophen‐2‐yl ester of the trifluoromethanesulfonic acid ( 2b ) was not successful.  相似文献   

16.
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO‐1 and HO‐2). The majority of these were based on a four‐carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1‐aryl‐2‐(1H‐imidazol‐1‐yl/1H‐1,2,4‐triazol‐1‐yl)ethanones and their derivatives. As regards HO‐1 inhibition, the aromatic moieties yielding best results were found to be halogen‐substituted residues such as 3‐bromophenyl, 4‐bromophenyl, and 3,4‐dichlorophenyl, or hydrocarbon residues such as 2‐naphthyl, 4‐biphenyl, 4‐benzylphenyl, and 4‐(2‐phenethyl)phenyl. Among the imidazole‐ketones, five ( 36 – 39 , and 44 ) were found to be very potent (IC50<5 μM ) toward both isozymes. Relative to the imidazole‐ketones, the series of corresponding triazole‐ketones showed four compounds ( 54 , 55 , 61 , and 62 ) having a selectivity index >50 in favor of HO‐1. In the case of the azole‐dioxolanes, two of them ( 80 and 85 ), each possessing a 2‐naphthyl moiety, were found to be particularly potent and selective HO‐1 inhibitors. Three non‐carbonyl analogues ( 87 , 89 , and 91 ) of 1‐(4‐chlorophenyl)‐2‐(1H‐imidazol‐1‐yl)ethanone were found to be good inhibitors of HO‐1. For the first time in our studies, two azole‐based inhibitors ( 37 and 39 ) were found to exhibit a modest selectivity index in favor of HO‐2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   

17.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

18.
P‐glycoprotein (P‐gp)‐mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7‐dimethoxy‐2‐{2‐[4‐(1H‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2‐[(1‐{4‐[2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1H)‐yl)ethyl]phenyl}‐1H‐1,2,3‐triazol‐4‐yl)methoxy]‐N‐(p‐tolyl)benzamide (compound 7 h ) was identified as a potent modulator of P‐gp‐mediated MDR, with high potency (EC50=127.5±9.1 nM ), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR‐related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P‐gp‐mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P‐gp‐mediated MDR that has good potential for further development.  相似文献   

19.
2′‐Fluoro‐2′‐deoxyguanosine has been reported to have potent anti‐influenza virus activity in vitro and in vivo. Herein we describe the synthesis and biological evaluation of 6‐modified 2′‐fluoro‐2′‐deoxyguanosine analogues and their corresponding phosphoramidate ProTides as potential anti‐influenza virus agents. Whereas the parent nucleosides were devoid of antiviral activity in two different cellular assays, the 5′‐O‐naphthyl(methoxy‐L ‐alaninyl) ProTide derivatives of 6‐O‐methyl‐2′‐fluoro‐2′‐deoxyguanosine, 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine, and 2′‐deoxy‐2′‐fluoro‐6‐chloroguanosine, and the 5′‐O‐naphthyl(ethoxy‐L ‐alaninyl) ProTide of 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine displayed antiviral EC99 values of ~12 μM . The antiviral results are supported by metabolism studies. Rapid conversion into the L ‐alaninyl metabolite and then 6‐modified 2′‐fluoro‐2′‐deoxyguanosine 5′‐monophosphate was observed in enzymatic assays with yeast carboxypeptidase Y or crude cell lysate. Evidence for efficient removal of the 6‐substituent on the guanine part was provided by enzymatic studies with adenosine deaminase, and by molecular modeling of the nucleoside 5′‐monophosphates in the catalytic site of a model of ADAL1, thus indicating the utility of the double prodrug concept.  相似文献   

20.
A novel biocatalytic process for production of L ‐homoalanine from L ‐threonine has been developed using coupled enzyme reactions consisting of a threonine deaminase (TD) and an ω‐transaminase (ω‐TA). TD catalyzes the dehydration/deamination of L ‐threonine, leading to the generation of 2‐oxobutyrate which is asymmetrically converted to L ‐homoalanine via transamination with benzylamine executed by ω‐TA. To make up the coupled reaction system, we cloned and overexpressed a TD from Escherichia coli and an (S)‐specific ω‐TA from Paracoccus denitrificans. In the coupled reactions, L ‐threonine serves as a precursor of 2‐oxobutyrate for the ω‐TA reaction, eliminating the need for employing the expensive oxo acid as a starting reactant. In contrast to α‐transaminase reactions in which use of amino acids as an exclusive amino donor limits complete conversion, amines are exploited in the ω‐TA reaction and thus maximum conversion could reach 100%. The ω‐TA‐only reaction with 10 mM 2‐oxobutyrate and 20 mM benzylamine resulted in 94% yield of optically pure L ‐homoalanine (ee>99%). However, the ω‐TA‐only reaction did not produce any detectable amount of L ‐homoalanine from 10 mM L ‐threonine and 20 mM benzylamine, whereas the ω‐TA reaction coupled with TD led to 91% conversion of L ‐threonine to L ‐homoalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号