首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
原位合成TiB2-SiC基复相陶瓷及其高温摩擦学性能的研究   总被引:4,自引:0,他引:4  
本研究以SiC为基体,用TiC和B4C为原料,采用新的反应原理生成TiB2,原位合成了TiB2-SiC基复相陶瓷,提高了SiC陶瓷的物理性能和高温摩擦学性能:随着材料中TiB2物相重量百分比的增加,材料的高温摩擦学性能提高。在以下摩擦环境参数下TiB2(wt25%)SiC基复相陶瓷自对偶在空气中高温摩擦磨损性能较好,呈现良好的高温自润滑性能:在升温状态下、空气中、环境温度为200℃-1000℃、外加载荷为0.2MPa、摩擦速度为0.3m/s,温度和外加载荷对TiB2-SiC基复相陶瓷自对偶比磨损率的影响具有依存性。高温摩擦氧化是TiB2-SiC基复相陶瓷自对偶高温磨损主要机理,磨损试样磨损断面包含摩擦氧化层、过渡层和基体亚表面三层。氧化层和过渡层接触紧密;磨屑具有典型包裹结构。  相似文献   

2.
孙红亮  孙才  朱德贵 《陶瓷学报》2011,32(4):552-556
本文采用热等静压原位合成技术制备了TiB2-TiCx和SiC-TiB2-TiCx复相陶瓷,对其高温氧化行为进行了研究.结果表明,添加SiC后陶瓷材料抗氧化性有很大提高.SiC-TiB2-TiCx陶瓷的最高有效抗氧化温度为1200℃,而TiB2-TiCx陶瓷只有700℃.在温度低于1200℃时,SiC-TiB2-TiCx陶瓷的长时间抗氧化性能也优于TiB2-TiCx陶瓷.  相似文献   

3.
研究了SiC及其复相陶瓷从室温到1200℃的高温摩擦学性能。随着试验温度的升高,SiC/SiC的高温摩擦系数变化不大,比磨损率呈现出不变(Ⅰ)、增加(Ⅱ)和减小(Ⅲ)三种模式;SiC-TiC和SiC-WC自对偶的高温摩擦系数和比磨损率很小,摩擦系数从400℃开始减小;在高温磨损中,自对偶的磨损机理由轻微的粘着磨损控制,磨损由模式Ⅰ和模式Ⅱ向模式Ⅲ转化,呈现出高温自润滑特性。在600℃时摩擦氧化明显,氧化物主要为无定形的SiO2,在摩擦表面形成一层由微米或亚微米级氧化物颗粒组成的薄膜,该薄膜层具有润滑作用;在氧化物薄膜层和摩擦表面存在一定程度的晶格畸变,增加了薄膜层的塑性变形能力,衰减了摩擦应力,这就是自对偶高温自润滑的机理。  相似文献   

4.
用真空热压工艺制备了Al2O3-SiC复相陶瓷.对热压烧结的纯Al2O3以及Al2O3-SiC复相陶瓷进行了摩擦磨损实验,研究了SiC添加量对复 相陶瓷摩擦磨损性能的影响.结果表明:在压力为25 MPa,1635℃热压烧结1h,当SiC的质量含量为5%时,Al2O3-SiC复相陶瓷的耐磨性最佳,虽摩擦系数最大(0.61,Al2O3则为0.46),但磨损率(WR)仪为5×10-4mm3/(N·m).Al2O3-SiC复合材料的磨损机理为脆性断裂引起的磨粒磨损,材料的 WR与断裂韧性(KIc)和Vickers硬度(Hv)的乘积(KIc1/2HV5/8)成反比.  相似文献   

5.
SiC和SiC-WC复相陶瓷高温自润滑特性及其机理   总被引:1,自引:1,他引:1  
周松青  肖汉宁  杨巧勤 《硅酸盐学报》2004,32(12):1470-1475
研究了SiC和SiC-WC在真空中的自对偶高温摩擦性能。随着温度的升高,SiC/SiC的摩擦系数变化不大,比磨损率(自对偶体积磨损量与接触压力和摩擦路程之比)从20℃到800℃保持为4.0×10~(-8) mm~3/(N·mm)(模式Ⅰ),从800℃到1 200℃减少(模式Ⅱ),自对偶的高温磨损机理由轻微的粘着磨损控制,磨损由模式Ⅰ向模式Ⅱ转化,呈现出高温自润滑特性。SiC-WC/SiC-WC显示了较低的摩擦系数,直到1 200℃均不高于0.35,在1 000℃、0.4 MPa压力下自对偶的比磨损率仅为SiC/SiC的比磨损率的50%左右。在600℃SiC/SiC摩擦氧化明显,氧化物主要为无定形的SiO_2,在摩擦表面形成一层由微米或亚微米级无定形平滑薄膜层,这就是样品出现自润滑的机理。  相似文献   

6.
几种高硬度陶瓷在不同湿度下的滑动摩擦行为研究   总被引:1,自引:0,他引:1  
研究了SiC,TiC,TiB2及三者的复相陶瓷材料在不同湿度条件下的滑动摩擦行为.以Al2O3为摩擦配伍,结果:几种陶瓷的摩擦系数均随湿度的增加降低,但其磨损随材料的不同表现不同.在高湿度条件下,SiC可与空气中的水反应形成氧化膜而降低磨损,SiC-TiC-TiB2三元复合材料在不同湿度下磨损几乎不受影响,且与其他陶瓷材料相比摩损较小,显示出其良好的摩擦应用前景.  相似文献   

7.
在XP-5高温摩擦磨损试验机上考察了La2O3–MoSi2与SiC摩擦副在1 000℃、30 N载荷以及不同滑动速率下的摩擦磨损行为。利用扫描电子显微镜和X射线衍射仪分析了La2O3–MoSi2复合材料和SiC的磨损表面形貌与相组成。结果表明:La2O3–MoSi2与SiC摩擦副的摩擦因数随滑动速率的增加而减小,在滑动速率为0.084 m/s时,La2O3–MoSi2复合材料磨损率最大;0.126 m/s时磨损率最小。其磨损机理除氧化磨损之外,还表现为黏着磨损、研磨和疲劳点蚀。SiC的磨损率随滑动速率的增加而减小,始终表现为磨损质量增加,这归因于氧化质量增加大于磨损质量损失。  相似文献   

8.
在SiC基体中,用TiC和B4C为原料采用固相反应原理原位合成了高温自润滑TiB2-SiC基复相陶瓷,该复相陶瓷从400℃开始呈现高温减磨性能;复相陶瓷中TiB2颗粒产生的"钉扎效应",导致裂纹扩展路径偏转,改变了应力场的分布特性,降低了微裂纹尖端应力场强度,提高了裂纹扩展门槛值.TiB2-SiC磨损中存在断裂力学上的(Ⅰ Ⅱ)型和(Ⅰ Ⅲ)复合裂纹非平面扩展,以及裂纹尖端微小塑性屈服区的存在,使得裂纹扩展门槛值在"极限上值"和"极限下值"间随着裂纹扩展实际有效长度的变化而动态变化,导致材料延迟断裂.  相似文献   

9.
马爱琼  贺嘉伟 《硅酸盐通报》2015,34(6):1670-1673
采用等温氧化增重法,研究了1650℃热压烧结的TiB2-TiSi2复相陶瓷的高温氧化行为.通过XRD、SEM等分析手段,研究了高温氧化层的物相组成与显微结构,并结合热力学计算,探讨了TiB2-TiSi2复相陶瓷高温抗氧化机理.研究表明:TiB2-TiSi2复相陶瓷的氧化增重随时间变化符合抛物线变化规律;随着在空气中氧化时间延长,氧化增重初期增加较快,进而增加较为平缓,进入钝化氧化阶段;TiB2-TiSi2复相陶瓷的高温抗氧化机理为TiSi2先于TiB2与氧发生反应形成TiO2与SiO2保护层,阻碍了氧气与材料的进一步接触,使材料具有高温自愈合抗氧化性,提高了TiB2-TiSi2复相陶瓷的高温使用温度.  相似文献   

10.
采用自制的盘销式感应加热磨损试验研究了高温条件下Sialon陶瓷复合材料摩擦磨损特性,优化出了一种具有较好高温抗磨性的Sialon陶瓷材料成分和制备工艺方法。结果表明:当载荷为20 N,旋转速度为360 r/min时,高温磨损机制以氧化磨损和粘着磨损为主,在磨损表层出现白亮层,表明此时因摩擦热和外加热源的联合作用已使磨损表层重结晶并形成氧化物屑。随着温度的提高,失重量和摩擦系数都下降。同时得到了耐磨性最优的Sialon陶瓷复合材料,烧结工艺为1900℃,BN的加入量为5wt.%。  相似文献   

11.
Two-dimensional carbon fiber-reinforced silicon carbide matrix (C/SiC) composites used for hinge bearing were prepared by chemical vapor infiltration. The testing and results of unlubricated friction behavior of hinge bearing under high-load transmitting motion was investigated. The effects of load on friction behavior between different sliding couple were analyzed. Finally, worn surfaces and debris were observed by scanning electron microscopy to study the wear mechanism. A constant friction coefficient between self-mated C/SiC composites of 0.68 was obtained on increasing load up to about 5800 N. Excellent wear resistance and load-carrying ability was demonstrated by low wear and especially small deformation.  相似文献   

12.
SiC coating was deposited on carbon/carbon (C/C) composites by chemical vapor deposition (CVD). The effects of elevated temperatures on tribological performance of SiC coating were investigated. The related microstructure and wear mechanism were analyzed. The results show that the as-deposited SiC coating consists of uniformity of β-SiC phase. The mild abrasive and slight adhesive wear were the main wear mechanisms at room temperature, and the SiC coating presented the maximum friction coefficient and the minimum wear rate. Slight oxidation of debris was occurred when the temperature rose to 300?°C. As the temperature was above 600?°C, dense oxide film formed on the worn surface. The silica tribo-film replaced the mechanical fracture and dominated the frication process. However, the aggravation of oxidation at elevated temperatures was responsible for the decrease of friction coefficient and the deterioration of wear rate. The SiC coating presented the minimum friction coefficient and the maximum wear rate when the temperature was 800?°C.  相似文献   

13.
The relative wear resistance of αSiC–TiB2 composites prepared by reactive sintering was investigated on a pin on flat tribometer, in air and in presence of water. Experimental results show that the composite materials are less worn than monolithic SiC. The wear mechanisms in air and water are identified.In air, a protective oxidised debris layer is formed on the composites, whereas roller formation was observed with SiC. In water, the surface of the composites is polished, whereas SiC is worn by fragile ruptures (cleavages).  相似文献   

14.
C/C–SiC composites are promising candidates for heavy-duty tracked vehicle brake discs. A third-body layer (TBL) can be formed on the surface of C/C–SiC self-mated brake discs, which has an important impact on tribological behavior and wear mechanism of brake discs. Herein, the formation conditions and evolution process of TBL and its effect on friction and wear properties were investigated. An appropriate braking pressure and speed (P and V) are beneficial to the cutting of asperities and refinement of wear debris on the contact surface, which are preconditions for the formation of original TBL. The original TBL can be formed under the P·V of 12, 15, and 16, which effectively improve braking stability and reduce the wear rate. During the continuous braking process, the original TBL undergoes growth, stabilization, destruction, and regeneration. Under the frictional heat and compressive stress, wear debris gradually evolves into a uniform and dense TBL. The average coefficient of friction and wear rate reach to the lowest value of .446 and 38.5 × 10−3 cm3/MJ, respectively. A continuous high temperature in the later stages of braking leads to severe oxidative wear. The newly formed TBL covers the original surface to form a multilayered structure, indicating the TBL undergoes destruction and regeneration.  相似文献   

15.
The effects of temperature and sliding speed on the tribological behavior of a SiC ceramic by sliding on the same material in deoxygenated water were investigated from room temperature to 300°C under the corresponding saturated vapor pressures. The friction coefficient and specific wear rates of both plates and disks increased at elevated temperatures at all sliding speeds, but decreased with increasing sliding speed at 120° and 300°C. Fine mirrorlike worn surfaces were observed without wear debris under all sliding conditions. The wear mechanism appears to consist of hydrothermal oxidation of SiC and dissolution of reaction products such as silica.  相似文献   

16.
Systematic dry sliding wear tests with monolithic ZrB2 and Al2O3 pins coupled to ZrB2, ZrB2-20 vol% SiC and Al2O3 discs were carried out in a disc-on-pin configuration. The steady state friction of ZrB2 self-mated or cross coupled with Al2O3 was about 1.1. Self-mated monolithic ZrB2 discs worn about three orders of magnitude more than self-mated Al2O3 discs. ZrB2 pin wear rate was almost double when coupled to ZrB2 or ZrB2-20 vol% SiC discs than when coupled to Al2O3 discs. The wear track of ZrB2-based materials showed an oxygen increment due to humidity-driven tribo-reaction. In all the systems, the main wear mechanisms observed were microfracture and abrasion. Numerical calculations and fracture models were employed to describe the wear mechanisms. By nanoindentation tests on worn and unworn areas, a significant lower hardness of the debris layer formed when ZrB2 materials were involved.  相似文献   

17.
《Ceramics International》2022,48(1):179-189
Combined stir casting and squeeze casting processes were used to fabricate Al5083 matrix composites reinforced with 20, 25, and 30 wt% SiCp. The microstructure, mechanical properties and wear behavior of the composites fabricated by combined stir casting and squeeze casting were compared with those fabricated by stir casting. The results revealed that the combined casting method improved the distribution of SiC particles through the reduction of the agglomeration of SiC particle and reduced the porosities of the samples from 2.32% to 1.29% in the sample containing 30 wt% SiC. These modifications led to the enhancement of mechanical properties i.e. increased the hardness to 85 BHN and the compressive strength to 350 MPa for the sample containing 30 wt% SiC fabricated by the combined casting method. In addition, the wear resistance of the samples fabricated by the combined casting method improved because of the reduced size of the wear debris as well as the smaller worn region. The dominant wear mechanism of all the composite samples fabricated by both methods was the delamination of the tribological layer while adhesion wear was dominant in the monolithic Al alloy.  相似文献   

18.
SiC一石墨填充PTFE复合材料的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
在聚四氟乙烯(PTFE)中分别填充碳化硅(SiC),石墨及不同配比的SiC-石墨混合物,制备了具有不同力学和摩擦学性能的PTFE基复合材料。探讨了填料组成对材料硬度及干摩擦条件下与不锈钢环对磨时摩擦磨损性能的影响,并研究了PTFE基复合材料的磨损表面和磨屑形貌。结果表明,填充适量的SiC-石墨混合物既能增加PTFE的承载能力,又可保持良好的摩擦学性能;不同复合材料的磨损机理不同,磨损表面有磨屑形貌  相似文献   

19.
《Ceramics International》2021,47(24):34783-34793
C/C–SiC composites are considered to be strong candidates for the new generation of high-speed train brake discs. To achieve a better application, it is necessary to improve understanding of the oxidation behaviour of C/C–SiC brake discs after a full-scale bench test rig. In this study, full-scale braking bench tests for C/C–SiC self-mated brake pairs were conducted under a braking speed of 350–420 km/h and a braking pressure of 17–28 kN. Moreover, the oxidation behaviour and mechanisms of the C/C–SiC brake discs during the practical braking process were investigated. The results indicate that the oxidation behaviour is highly dependent on the friction surface region of the C/C–SiC brake disc owing to the distribution of microcracks, the formation of friction films, the difference in temperature, and the contact content with O2. Specifically, the oxidation depths of the friction layer on the inner circumferential surface, middle friction surface, and outer circumferential surface were 278.3, 252.1, and 359.9 μm, respectively. Furthermore, the oxidation reaction preferentially occurs in the active area of the C fibre and pyrolytic carbon (PyC) during the braking process.  相似文献   

20.
The tribological behaviors of hybrid PTFE/Kevlar fabric composites filled with nano‐SiC and/or submicron‐WS2 fillers were studied. Scanning electron microscopy and energy‐dispersive X‐ray spectrometer were used for analysis of the worn surface, transfer film, and debris of the PTFE/Kevlar fabric composites. In addition, the wear volume loss of the composite was measured by means of a laser microscopic 3D and profile measurement apparatus. The results indicate that although both single fillers and hybrid fillers can reduce the wear rate of composites, but hybrid fillers filled composites could achieve the desired comprehensive tribological properties in dry sliding. The improved tribological performance of filled composites can be attributed to two aspects: the formation of a thin and tenacious transfer film on the counter‐surface, and the restrain the formation of larger debris. Tiny wear debris was easily trapped in the gap of a worn surface and can repair the damaged surface. In addition, the trapped debris could be considered as a secondary source of lubricant. POLYM. COMPOS., 37:2218–2226, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号