首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, the main characteristics of the polymeric materials are considered for understanding their possible application in ecological sand‐fixing. In this investigation, two emulsions, named as E2, a poly(vinyl acetate) emulsion, and E7, a vinyl acetate–ethylene copolymer emulsion, have been selected for a series of tests related to the practical requirements for ecological sand‐fixing. Besides the sand‐fixing properties and the thermal aging and freeze–thaw stabilities of the emulsions, their effects in increasing the growth of both microbes and plants in sandy lands have been evaluated by field experiments in Kerqin Sandy Land of China, and the relationship between the performance and structure of the two emulsions has also been described. The experimental results show that both emulsions could significantly improve the compressive strength of treated sand and could withstand the changes in temperature of the Kerqin Sandy Land. However, different effects were exhibited in promoting the growth of microbes, in facilitating the accumulation of organic fertilizer and soluble salt, and in increasing the crop yield. All of the differences are attributed to their different molecular chain structures. These findings suggest that the structure of a polymeric emulsion should be the first consideration for the materials used in ecological sand‐fixing, and ecological sand‐fixing is a successful method for the stabilization of sandy land and the restoration of desertified land in semiarid regions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44102  相似文献   

2.
For the first time, the salt-resistant emulsion was applied as an ecological sand-fixing material to enhance the sand-fixing ability in salty desert. This study started from the synthesis of the novel salt-resistant poly(vinyl acetate-dibutyl maleate-acyclic acid-sodium p-styrene sulphonate) copolymer emulsion. Then, the structure, composition and thermal property of the emulsion were characterised. The sand-fixing properties and ecological effect of the emulsion were evaluated. The experimental results showed that the emulsion has been successful synthesised and could be used as an ecological sand-fixing material. The related reason is that, first, the emulsion could significantly visibly enhance the sand-fixing ability in high salt-affected sand land. Second, the prepared emulsion had good thermal aging resistance and freeze-thaw stabilities to withstand the changes in the temperature of salty desert, and the test of the influence of the emulsion on the growth of microbe of sand showed a favourable ecological effect.  相似文献   

3.
Aiming at good thickening ability and temperature resistance in water‐based drilling fluid, a novel copolymer viscosifier (SDKP) of sodium 2‐acrylamido‐2‐methylpropane sulfonate (NaAMPS) with N‐vinylcaprolactam (NVCL) and cross‐linking divinylbenzene (DVB) was prepared by micellar radical polymerization. The composition and molecular structure of optimal SDKP under the optimum reaction conditions was characterized by FT‐IR, 1H‐NMR, and elemental analysis, and the molecular weight was determined by GPC. Thermal gravimetric analysis showed that the SDKP was even stable when the temperature was not higher than 330 °C. The performance of SDKP as viscosifier for aqueous, brines, and saturated brine bentonite drilling fluid was evaluated before and after aging tests at 230 °C for 16 h. The evaluation results indicated that the SDKP had excellent thickening ability, thermal resistant, and salt tolerance. HTHP rheology test showed that the SDKP containing drilling fluids displayed a thermo‐thickening effect in temperature range of 150 to 180 °C, which was beneficial to increase the viscosity and strength of fluids at high temperatures. Shear test showed that the SDKP illustrated a similar shear thinning to xanthan gum. ESEM observations demonstrated that the continuous three‐dimensional network was formed in the SDKP aqueous and brines solution, which was probably the main reason for its excellent thickening properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44140.  相似文献   

4.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
N‐halamine polymeric material based on cellulose extracted from an agricultural waste (rice straw) was blended with sand/charcoal for disinfection purposes. The presence of N‐halamine between sand/charcoal particles in water filters prevents internal bacterial growth and kills filtered cells especially in the deep and lower parts of the filters. N‐halamine was blended with sand/charcoal with different ratios, 1:3, 1:2, 1:1, 2:1, and 3:1, and their antimicrobial activity was evaluated using different methods such as agar plate, agar blend, stirred flask, and column methods. Increasing the ratio of the cellulosic N‐halamine provides further filtration and disinfection action in water in addition to securing a clean medium between sand/charcoal particles especially in columns as models for water filters. The ratio 1:1 (sand/charcoal: N‐halamine) was found to be suitable for producing a recyclable water filter and recyclable water purification unit based on sand/charcoal‐ N‐halamine blends. POLYM. COMPOS., 35:2137–2143, 2014. © 2014 Society of Plastics Engineers  相似文献   

6.
To tune the photophysical properties of polyimides (PIs), a diamine containing naphthalene and triphenylamine units, N1‐(4‐aminophenyl)‐N1‐[(4‐naphthalene‐2‐yloxy)phenyl]benzene‐1,4‐diamine (DA), was synthesized. A series of fluorescent electroactive new PIs from synthesized DA were prepared with conventional thermal imidization with dianhydride. The selected dianhydride were used to study and compare the effects of rigid planar phenyl, flexible phenoxy, and nonplanar flexible hexafluoroisopropyidene and carbonyl groups in the main polymer backbone on the optoelectronic properties and processability of materials. The structures of the synthesized diamine and its PIs were evaluated by spectral and CHNS elemental analysis. The optoelectronic and thermal properties of PIs revealed intense blue‐light emission (428–477 nm), a low oxidation potential (0.3–1.3 V), and a lower highest occupied molecular orbital–lowest unoccupied molecular orbital gap (2.92–3.21 eV). The observed behavior and properties of our synthesized PIs suggest their potential as future hole‐transport materials in optoelectronic applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44526.  相似文献   

7.
A waterborne‐polyurethane‐based fluorescent dye 4‐amino‐N‐cyclohexyl‐1,8‐naphthalimide (WPU‐ACN) was synthesized by attaching 4‐amino‐N‐cyclohexyl‐1,8‐naphthalimide (ACN) into polyurethane chains according to a prepolymer?ionomer process. The structure of WPU‐ACN was confirmed by means of Fourier transform infrared spectroscopy and UV?visible absorption. The number‐average molecular weight, glass transition temperature and average emulsion particle size for WPU‐ACN were determined as 7.8 × 105 g mol?1, 60 °C and 60 nm, respectively. The improved thermal stability of WPU‐ACN could be attributed to the incorporation of naphthalimide units in the preformed urethane groups. The fluorescence intensity of WPU‐ACN was dramatically enhanced compared with that of ACN. It was found that the fluorescence intensity of WPU‐ACN increased with increasing temperature, and the fluorescence spectra of WPU‐ACN showed a positive solvatochromic effect. In addition, the fluorescence of WPU‐ACN emulsion was very stable not only for long‐term storage but also for fluorescence quenching. © 2013 Society of Chemical Industry  相似文献   

8.
The present investigation deals with the problems of unsatisfactory high‐temperature resistance, inferior salt tolerance and poor comprehensive performance for the domestic fluid loss additives. In this study, a zwitterionic polymer, 2‐acrylamido‐2‐methylpropanesulfonic acid/diallyldimethylammonium chloride/N,N‐dimethylacryl amide/acrylic acid used as fluid loss agent for oil well cementing, was synthesized by free radical polymerization in aqueous solution with ammonium persulfate and N,N,N′,N′‐tetramethylethylenediamine as initiator. The optimal synthesis conditions were obtained via single‐factor variable analysis. The compositions, micro‐structural morphologies, and thermal‐stability of polymer were characterized by FT‐IR, 1H NMR, SEM, DTG, and DSC techniques. The results manifested that the synthetic polymer cement slurry exhibited prominent advantages such as excellent fluid loss control capacity, thermal stability (up to 200°C), salt‐tolerance (saturated brine) and rheological behavior. Even more strikingly, the zwitterionic polymer showed less impact on hardening cement and accelerated the post compressive strength of set cement, verified through the ultrasonic method. Additionally, the mechanism of fluid loss control was found to rely mainly on improving the filter cake quality and the polymer chemisorptions on the surface of hydrated cement through SEM, permeability and TOC analysis. In consequence, the zwitterionic polymer enhanced the comprehensive properties of cement slurry and had great potential to apply in high temperature and high salinity oil‐well cementing. POLYM. ENG. SCI., 57:78–88, 2017. © 2016 Society of Plastics Engineers  相似文献   

9.
Diethylene glycol ester of hydrogenated rosin (DGE‐HR) emulsion was prepared via phase inversion method and then blended with waterborne (wb) polyacrylate for pressure‐sensitive adhesives (PSAs). The preparation conditions of DGE‐HR emulsion were studied. DGE‐HR emulsion with an average particle size of about 220 nm was obtained. Furthermore, the thermal, adhesive, and viscoelastic properties and the morphology of DGE‐HR/polyacrylate composite were investigated. Thermal analysis indicated that glass transition temperatures (Tg) of the DGE‐HR/polyacrylate blends became higher as the DGE‐HR content increased and DGE‐HR did not have a significant influence on thermal stability of the blend films. Atomic Force Microscopy (AFM) observation revealed that the DGE‐HR particles added had a good miscibility with acrylic particles. Additionally, for these tackified acrylic PSAs, positive correlations between mechanical performance and viscoelastic response at bonding and debonding frequencies were also found. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42965.  相似文献   

10.
In this study, microcapsules containing fragrance oils as active agent were synthesized by interfacial thiol‐ene polymerization in oil‐in‐water emulsion. One water‐soluble dithiol and four oil‐soluble acrylates were used as “click”able monomers. The polymerization kinetics was studied by HPLC and 1H‐NMR. The size and morphology of the microcapsules were characterized by means of light scattering, optical microscope, and scanning electron microscope, and their thermal property was examined by TGA. The encapsulation efficiency and stability of the microcapsules were monitored at room temperature and 45 °C for 1 month. In general, this interfacial thiol‐ene polymerization was demonstrated to be a facile and efficient approach for fragrance microencapsulation with new and stable shell materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43905.  相似文献   

11.
Poly (methyl methacrylate) (PMMA)–starch composites were prepared by emulsion polymerization technique for L‐asparaginase (L‐ASNase) immobilization as highly activated support. The hydroxide groups on the prepared composites offer a very simple, mild and firm combination for enzyme immobilization. The pure PMMA and PMMA‐starch composites were characterized as structural, thermal and morphological. PMMA‐starch composites were found to have better thermal stability and more hydrophilic character than pure PMMA. L‐ASNase was immobilized onto PMMA‐starch composites contained the different ratio of starch (1, 3, 5, and 10 wt %). Immobilized L‐ASNase showed better performance as compared to the native enzyme in terms of thermal stability and pH. Km value of immobilized enzyme decreased approximately eightfold compared with the native enzyme. In addition to, immobilized L‐ASNase was found to retain 60% of activity after 1‐month storage period at 4 °C. Therefore, PMMA‐starch composites can be provided more advantageous in terms of enzymatic affinity, thermal, pH and storage stability as L‐ASNase immobilization matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43421.  相似文献   

12.
Stable emulsions of emulsifier/N‐methylpyrrolidone‐free crosslinkable waterborne polyurethane–acrylates (C‐WBPUAs) with various acrylic monomer contents (0, 10, 20, and 30 wt %) for footwear adhesive materials were successfully prepared in this study. The effects of the acrylic monomer content on the shelf stability, mean particle size, and viscosity of the C‐WBPUA emulsions; the tensile properties and dynamic mechanical thermal properties of the C‐WBPUA film samples; and the adhesive strengths between the upper (synthetic leather) and the sole (ethylene vinyl acetate rubber) in both the dry and wet states of the formulated adhesives (C‐WBPUA emulsion–thickener–hardener) were examined. The adhesive strengths of the formulated adhesives for footwear (leather–sole) in both the dry and wet states increased with increasing acrylic monomer content up to 20 wt %; after this, they almost levelled off. Thus, C‐WBPUA20 and C‐WBPUA30, where the number indicates the acrylic monomer content, can be recommended as high‐performance adhesive materials for footwear. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43758.  相似文献   

13.
《Polymer Composites》2017,38(9):1792-1799
A series of poly(acrylonitrile‐co‐hexyl methacrylate), PAN‐co‐PHMA, copolymers with various hexyl methacrylate (HMA) contents were synthesized by emulsion technique. The incorporation of HMA units into the copolymers was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Glass transition temperatures (T g) and thermal decomposition temperatures of copolymers were determined by differential scanning calorimetry and thermogravimetric analysis. The T g of copolymers were lowered monotonically by increasing HMA content, while thermal stabilities of copolymers were enhanced. The frequency dependence of dielectric properties of three different amounts of LiClO4 salt doped copolymer films was investigated. The influence of molar fraction of HMA on dielectric constant and ac‐conductivity of copolymer films was examined. Samples with higher HMA contents showed better stability and conductivity, as a result of increase in free volume and the mobility of the dipoles. The ac conductivity of copolymers was also improved by increasing LiClO4 salt which was due to the existence of more charge carriers. PAN(88)‐co‐PHMA(12) copolymer with 1.5 mol% of lithium salt exhibited ionic conductivity of the 7.8 × 10−4 S/cm at 298 K. POLYM. COMPOS., 38:1792–1799, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
In this work, poly(acrylamide‐co‐acrylic acid)/silica [poly(AM‐co‐AA)/SiO2] microspheres were prepared by inverse phase suspension polymerization in the presence of γ‐3‐(trimethoxysilyl) propyl methacrylate (or 3‐methacryloxypropyltrimethoxysilane) modified SiO2. The effects of SiO2 nanoparticles on tuning morphology and properties of the nanocomposite microspheres were studied. Plugging ability and oil displacement performance were also systematically investigated by single‐ and double‐tube sand pack models. The results showed that SiO2 nanoparticles can effectively adjust surface smoothness, swelling behavior, and thermal stability of the nanocomposite microspheres. Compared with pure copolymer microspheres, these nanocomposite microspheres also displayed better salt tolerance and shear resistance. Such multifunctional nanocomposite microspheres can provide effective plugging in the high‐permeability channels and can also achieve deep profile control. The highest plugging rate can be 86.11% and the oil recovery for low‐permeability tube was enhanced by 19.69%. This research will provide a candidate material for the further enhanced oil recovery (EOR) research and supply the theoretical support for profile control system in field application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45502.  相似文献   

15.
This study reports the preparation of 1‐amino‐1,2,3‐triazole‐3‐oxide (DPX2) and its transformation to 1,2,3,4‐tetrazine‐1‐oxide. DPX‐2 provides insight into a novel N‐oxide/N‐amino high‐nitrogen system, being the first energetic material in this class. The ability of this material to undergo a nitrene insertion forming 1,2,3,4‐tetrazine‐1‐oxide was also studied, and evidence for this material, the first non‐benzoannulated 1,2,3,4‐tetrazine‐1‐oxide, is presented. The existence of both of these materials opens new strategies in energetic materials design. DPX2 was characterized chemically (Infrared, Raman, NMR, X‐ray) and as a high explosive in terms of energetic performances (detonation velocity, pressure, etc.) and sensitivities (impact, friction, electrostatic). DPX‐2 was found to possess good thermal stability and moderate sensitivities, indicating the viability of N‐amino N‐oxides as a strategy for the preparation of new energetic materials.  相似文献   

16.
In this study, we aimed to fabricate a form‐stable phase‐change hydrogel (PCH) with excellent mechanical properties and heat‐storage properties. Sodium alginate (SA) and polyacrylamide (PAAm) composite hydrogels were prepared with ionically crosslinked SA in a PAAm hydrogel network. Glauber's salt [i.e., sodium sulfate decahydrate (Na2SO4·10H2O)] was incorporated within the hydrogel network as a phase‐change material. Scanning electron microscopy micrographs revealed that Na2SO4·10H2O was confined in the micropores of the hydrogel inner spaces, and differential scanning calorimetry curves showed that the composite hydrogel possessed a considerable storage potential. Mechanical properties tests, such as tensile and compressive measurements, presented a decreasing trend with increasing Na2SO4·10H2O dosage. We concluded that the prepared composite PCH could be used to design hydrogel materials with thermal‐energy‐storage applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43836.  相似文献   

17.
The response to temperature and glucose, high salt tolerance and self‐regulated drug delivery are simultaneously probable by applying a multifunctional microgel in a rational design by a colloid chemistry method. Such smart microgels were fabricated with thermoresponsive N‐isopropylacrylamide, glucose‐sensitive (2‐phenylboronic esters‐1,3‐dioxane‐5‐ethyl)methyl acrylate (PBDEMA) and water‐soluble crosslinker poly(ethylene glycol) diacrylate through a precipitation emulsion method. These colloidal nanoparticles exhibited PBDEMA‐composition‐dependent responsive behavior with changing temperature and ionic strength. Amongst them, the microgel with 20.7 mol% PBDEMA with a narrow size distribution is suitable for diabetes treatment because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0–2.0 mg mL?1), control the release of preloaded insulin and is highly stable under normal physiological conditions. Preliminary experiments suggest these highly stable microgels have the potential to be used for self‐regulated therapy and monitoring the response to treatment. © 2018 Society of Chemical Industry  相似文献   

18.
2,5‐Furandicarboxylic acid (FDCA) is a promising biobased alternative material to terephthalic acid. In this study, three types of poly(butylene adipamide) (PA‐4,6) containing 10, 20, and 30 mol % of poly(butylene‐2,5‐furandicarboxylamide) (PA‐4,F) were synthesized through consecutive prepolymerization and solid‐state polymerization (SSP). The incorporation of a 10 mol % PA‐4,F component into PA‐4,6 resulted in slight increases in the intrinsic viscosity (IV) and glass‐transition temperature (Tg) after 12 h of SSP at 220 °C. When the SSP temperature and reaction time increased, IV increased proportionally. The highest IV value of 0.75 was obtained by 48 h of SSP at 240 °C, whereas increases in the PA‐4,F content to 20 and 30 mol % gave rise to decreases in IV, Tg, and melting temperature; this interrupted the increase in SSP temperature. The thermal decomposition temperature of the PA‐4,F‐incorporated polyamide was lower than that with PA‐4,6 because of the lower thermal stability of the FDCA component. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43391.  相似文献   

19.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

20.
The ultrafine n‐octadecane/silk composite fibers as form‐stable phase change materials were successfully developed by the emulsion‐electrospinning method. The effect of n‐octadecane content in the emulsion on the morphology and thermal energy storage capacity of the composite fibers were scientifically investigated. Scanning electron microscopy images show that the composite fibers display cylindrical shape with smooth surface and uniform diameter. Differential scanning calorimetry results demonstrate that the composite fibers exhibit reversible phase transition behavior, high thermal energy storage capacity, and good thermal reliability. Meanwhile, the composite fibers exhibit the capability to regulate their interior temperature as the ambient temperature alters according to the thermo‐infrared images. In addition, the composite fibers are friendly to the environment due to the biodegradability of silk. Therefore, the n‐octadecane /silk composite fibers have the great potential application of serving as form‐stable phase change materials for thermal energy storage and thermal regulation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45538.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号