首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Fatty acid methyl esters, derived from vegetable oils or animal fats and better known as biodiesel, have received considerable attention because of their environmental benefits and the limited resources of fossil fuels. Most biodiesel is usually produced by the transesterification of vegetable oils with methanol in the presence of a catalyst. This study reports on the preliminary results of using alkaline earth metal-doped zinc oxide as a heterogeneous catalyst for transesterification of soybean oil. The highest catalytic activity was obtained with ZnO loaded with 2.5 mmol Sr(NO3)2/g, followed by calcination at 873 K for 5 h. When the transesterification reaction was carried out at reflux of methanol (338 K), with a 12:1 molar ratio of methanol to soybean oil and a catalyst amount of 5 wt.%, the conversion of soybean oil was 94.7%. Besides, tetrahydrofuran (THF), when used as a co-solvent, could increase the conversion up to 96.8%. However, the recovered catalyst exhibited the lower catalytic activity with a conversion of soybean oil of 15.4%. Furthermore, DTA-TG, IR and the Hammett indicator method were employed for the catalyst characterizations.  相似文献   

2.
In recent years, vegetable oils, as renewable raw materials, became a promising feedstock for chemicals and biodiesel production. The main products derived from oils are esters of fatty acids, especially methyl esters, obtained by their transesterification with methanol, in presence of acid or alkaline catalysts. The use of such catalysts implies the need for washing operations, which leads to environmental pollution. In the present paper, the response surface methodology based on a central composite design, has been developed to optimize the process of transesterification of corn oil. Ba(OH)2 in presence of diethyl ether was used as catalyst. A quadratic polynomial equation was obtained. It correlates the reaction parameters [methanol/oil molar ratio (x r), reaction time (x t) and catalyst concentration (x c)] with methyl esters yield. Analysis of variance analysis showed that only methanol/oil molar ratio and catalyst concentration have had the most significant influences on the conversion. The maximum methyl esters yield was obtained using the following optimum parameters: methanol/corn oil ratio of 11.32, reaction time of 118 min and catalyst concentration of 3.6 wt%.  相似文献   

3.
KF-impregnated nanoparticles of γ-Al2O3 were calcinated and used as heterogeneous catalysts for the transesterification of vegetable oil with methanol for the synthesis of biodiesel (fatty acid methyl esters, FAME). The ratio of KF to nano-γ-Al2O3, calcination temperature, molar ratio of methanol/oil, transesterification reaction temperature and time, and the concentration of the catalyst were used as the parameters of the study. A methyl ester yield of 97.7 ± 2.14% was obtained under the catalyst preparation and transesterification conditions of KF loading of 15 wt%, calcination temperature of 773 K, 8 h of reaction time at 338 K, and using 3 wt% catalysts and molar ratio of methanol/oil of 15:1. This relatively high conversion of vegetable oil to biodiesel is considered to be associated with the achieved relatively high basicity of the catalyst surface (1.68 mmol/g) and the high surface to volume ratio of the nanoparticles of γ-Al2O3.  相似文献   

4.
The conventional biodiesel production method requires oil extraction followed by transesterification with methanol. The solubility of vegetable oils in methanol is low which decreases the overall rate of reaction. To eliminate the oil extraction step and improve the overall reaction rate, simultaneous extraction, esterification and transesterification were conducted by directly mixing methanol and tetrahydrofuran (THF) co-solvent and sulfuric acid catalyst with ground, desiccated coconut meat (copra) in a batch process and continuing the reaction until the system reached steady state. After separation of the mixture, yield was obtained by measuring the content of triglycerides, diglycerides and monoglycerides in the biodiesel phase. The yield increases with THF:methanol ratio, methanol:oil molar ratio and temperature. Within the range of conditions tested, the highest yield achieved was 96.7% at 60 °C, THF:methanol volume ratio of 0.4 and methanol:oil molar ratio of 60:1. The methanol:oil molar ratio is necessarily high in order to completely wet the copra mass, but is still lower than in previous studies by other researchers on in situ transesterification. Product assays show that the resulting biodiesel product is similar to conventionally produced coconut biodiesel. The results indicate that the in situ transesterification of copra using methanol/THF mixtures merits further study.  相似文献   

5.
A reactor has been developed to produce high quality fatty acid methyl esters (FAME) from waste cooking palm oil (WCO). Continuous transesterification of free fatty acids (FFA) from acidified oil with methanol was carried out using a calcium oxide supported on activated carbon (CaO/AC) as a heterogeneous solid-base catalyst. CaO/AC was prepared according to the conventional incipient-wetness impregnation of aqueous solutions of calcium nitrate (Ca(NO3)2·4H2O) precursors on an activated carbon support from palm shell in a fixed bed reactor with an external diameter of 60 mm and a height of 345 mm. Methanol/oil molar ratio, feed flow rate, catalyst bed height and reaction temperature were evaluated to obtain optimum reaction conditions. The results showed that the FFA conversion increased with increases in alcohol/oil molar ratio, catalyst bed height and temperature, whereas decreased with flow rate and initial water content in feedstock increase. The yield of FAME achieved 94% at the reaction temperature 60 °C, methanol/oil molar ratio of 25: 1 and residence time of 8 h. The physical and chemical properties of the produced methyl ester were determined and compared with the standard specifications. The characteristics of the product under the optimum condition were within the ASTM standard. High quality waste cooking palm oil methyl ester was produced by combination of heterogeneous alkali transesterification and separation processes in a fixed bed reactor. In sum, activated carbon shows potential for transesterification of FFA.  相似文献   

6.
Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst   总被引:1,自引:0,他引:1  
A series of alkali metal (Li, Na, K) promoted alkali earth oxides (CaO, BaO, MgO), as well as K2CO3 supported on alumina (Al2O3), were prepared and used as catalysts for transesterification of canola oil with methanol. Four catalysts such as K2CO3/Al2O3 and alkali metal (Li, Na, K) promoted BaO were effective for transesterification with >85 wt% of methyl esters. ICP-MS analysis revealed that leaching of barium in ester phase was too high (~1,000 ppm) when BaO based catalysts were used. As barium is highly toxic, these catalysts were not used further for transesterification of canola oil. Optimization of reaction conditions such as molar ratio of alcohol to oil (6:1–12:1), reaction temperature (40–60 °C) and catalyst loading (1–3 wt%) was performed for most efficient and environmentally friendly K2CO3/Al2O3 catalyst to maximize ester yield using response surface methodology (RSM). The RSM suggested that a molar ratio of alcohol to oil 11.48:1, a reaction temperature of 60 °C, and catalyst loading 3.16 wt% were optimum for the production of ester from canola oil. The predicted value of ester yield was 96.3 wt% in 2 h, which was in agreement with the experimental results within 1.28%.  相似文献   

7.
A heterogeneous catalyst, FeO x /SiO2, prepared by the pore-filling method, was found to be active in the transesterification of crude Jatropha oil with methanol. When the transesterification reaction was carried out with a reaction temperature of 220?°C, a catalyst amount of 15?wt%, a methanol/oil molar ratio of 218:1, and a reaction time of 3?h, the yield of fatty acid methyl esters (FAME) in the product exceeded 99.0?%, and met with EN standards for allowable contents of glycerine and mono-, di-, and tri-glycerides. The correlation between the FAME production activity and measured acidity of the FeO x /SiO2 catalysts showed that the transesterification reaction was promoted via the acidic function of these catalysts, which are less inhibited by coexisting free fatty acids in the feedstock triglycerides.  相似文献   

8.
Zn/I2 was found to be a practical and effective catalyst for the transesterification of soybean oil with methanol. A study for optimizing the reaction conditions such as the molar ratio of methanol to oil, the reaction time and the catalyst amount, was performed. The highest conversion of 96% was obtained under the optimum conditions. Further, the effect of free fatty acids and water in the soybean oil on the catalytic activity of the catalysts was also investigated.  相似文献   

9.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

10.
M.S. Kotwal 《Fuel》2009,88(9):1773-558
Flyash-based base catalyst was used in the transesterification of sunflower oil with methanol to methyl esters in a heterogeneous manner. Catalyst preparation variables such as, the KNO3 loading amount and calcination temperature were optimized. The catalysts were characterized by powder XRD. The catalyst prepared by loading of 5 wt.% KNO3 on flyash followed by its calcination at 773 K has exhibited maximum oil conversion (87.5 wt.%). The influence of various reaction parameters such as % catalyst loading, methanol to oil molar ratio, reaction time, temperature, reusability of the catalyst on the catalytic activity was investigated. K2O derived from KNO3 might be an essential component in the catalyst for its efficiency.  相似文献   

11.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

12.
橄榄油制备生物柴油的工艺研究   总被引:3,自引:0,他引:3  
以橄榄油为原料,四氢呋喃作共溶剂,NaOH为催化剂制备生物柴油.用气相色谱分析方法,通过对反应温度、醇油摩尔比、催化剂的量、反应时间的研究,得出在各自的最优化条件下橄榄油的转化率为97.3%.  相似文献   

13.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

14.
In recent years, the acceptance of fatty acid methyl esters (biodiesel) as an alternative fuel has rapidly grown in EU. The most common method for biodiesel production is based on triglyceride transesterification to methyl esters with dissolved sodium hydroxide in methanol as catalyst. In this study, cottonseed oil and used frying oil were subjected to the transesterification reaction with tetramethyl ammonium hydroxide and benzyltrimethyl ammonium hydroxide as strong base catalysts. This work investigates the optimum conditions for biodiesel production using amine-based liquid catalysts. Biodiesel ester content was strongly related with the type of feedstock and the reaction variables, such as those of the catalyst concentration, methanol to oil molar ratio, and reaction time. The overall results suggested that the transesterification of cottonseed oil achieved high conversion rates with both catalysts, while the use of waste oil resulted in lower yields of methyl esters due to the possible formation of amides.  相似文献   

15.
A kinetic study on soybean oil transesterification without a catalyst in subcritical and supercritical methanol was made at pressures between 8.7 and 36 MPa. It was found that the conversion of soybean oil into the corresponding methyl esters was enhanced considerably in the supercritical methanol. The apparent activation energies of the transesterification are different with the subcritical and the supercritical states of methanol, which are 11.2 and 56.0 kJ/mol (molar ratio of methanol to oil: 42, pressure: 28 MPa), respectively. The reaction pressure considerably influenced the yield of fatty acid methyl esters (FAME) in the pressure range from ambient pressure up to 25 MPa (280 °C, 42:1). The reaction activation volume of transesterification in supercritical methanol is approximately −206 cm3/mol. The PΔV term accounts for nearly 10% of the apparent activation energy, and can not be ignored (280 °C, 42:1).  相似文献   

16.
A transesterification reaction of Jatropha curcas oil with methanol in the presence of KOH impregnated CaO catalyst was performed in a simple continuous process. The process variables such as methanol/oil molar ratio (X1), amount of catalyst (X2) and total reaction time (X3) were optimized through response surface methodology, using the Box–Behnken model. Within the range of the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and total reaction time were found to be 8.42, 3.17% and 67.9 min, respectively. The results showed that the amount of catalyst and total reaction time have significant effects on the transesterification reaction. For the product to be accepted as a biodiesel fuel, its purity must be above 96.5% of alkyl esters. Based on the optimum condition, the predicted biodiesel conversion was 97.6% while the actual experimental value was 97.1%. The above mentioned results demonstrated that the response surface methodology (RSM) based on Box–Behnken model can well predict the optimum condition for the biodiesel production.  相似文献   

17.
Biodiesel has been synthesized from karanja, mahua and hybrid {karanja and mahua (50:50 v/v)} feedstocks. A high yield in the range of 95-97% was obtained with all the three feedstocks. Conversion of vegetable oil to fatty acid methyl esters was found to be 98.6%, 95.71% and 94% for karanja, mahua and hybrid feedstocks respectively. The optimized reaction parameters were found to be 6:1 (methanol to oil) molar ratio, H2SO4 (1.5% v/v), at 55 ± 0.5 °C for 1 h during acid esterification for the three feedstocks. During alkaline transesterification, a molar ratio of 8:1 (methanol to oil), 0.8 wt.% KOH (wt/wt) at 55 ± 0.5 °C for 1 h was found to be optimum to achieve high yield for karanja oil. For mahua oil and the hybrid feedstock, 6:1 (methanol to oil) molar ratio, 0.75 (w/w) KOH at 55 ± 0.5 °C for 1 h was optimum for alkaline transesterification to obtain a high yield. High yield and conversion from hybrid feedstock during transesterification reaction was an indication that the reaction was not selective for any particular oil. 1H NMR has been used for the determination of conversion of the feedstock to biodiesel.  相似文献   

18.
A biodiesel production process using magnetically stabilized fluidized bed reactor (MSFBR) has been developed based on the refined cottonseed oil. The reactant flow rate and magnetic field intensity effects on the nanometer magnetic catalyst behavior in the column were investigated. Orthogonal experiments (L4(2)3) were applied to optimize the best transesterification reaction conditions. Reaction temperature, methanol to oil molar ratio, and reactant flow rate were the main factors to influence transesterification conversion efficiency. These three factors chosen for the present investigation were based on the results of single-factor tests. The optimum transesterification reaction conditions of cottonseed oil were determined in MSFBR as follows: methanol to oil molar ratio 8:1, 40 cm3 min−1 reactant flow rate, 225 Oe magnetic field intensity and reaction temperature of 65 °C, the conversion efficiency reached 97% in 100 min. The cold filter plugging point and kinematic viscosity of cottonseed oil biodiesel were higher than that described by Chinese specifications of biodiesel because of the special fatty acid profiles of cottonseed oil. The activity stability of the nanometer magnetic solid catalyst in MSFBR was much better than that in the autoclave stirred reactor (ASR).  相似文献   

19.
This study was conducted to compare the effects of ultrasonic energy and mechanical stirring methods in bio-diesel production from rapeseed oil under base catalysis conditions. With the transesterification of rapeseed oil, the molar ratio of methanol to vegetable oil was 6: 1, and the amount of catalysts added to the vegetable oil was 0.3, 0.5 and 1.0% (wt/wt). The main components of methyl esters from the transesterification of rapeseed oil were oleic acid (48.5%, C18:1) and linoleic acid (18.1%, C18:2). In addition, the optimum conditions to produce fatty acid methyl esters (96.6%) were 0.5% KOH after 25 min of ultrasonification at 40 °C as compared to mechanical stirring at 60 °C. The maximum conversion ratio was 75.6% with 1.0% NaOH after 40 min of ultrasonification at 40 °C. These results indicate that ultrasonic energy could be a valuable tool for transesterification of fatty acids from rapeseed oil in terms of the reaction time and temperature.  相似文献   

20.
Biodiesel produced by the transesterification reaction of soybean oil using potassium hydroxide (KOH) catalytic is a promising alternative fuel to diesel regarding the limited resources of fossil fuel and the environmental concerns. In order to decrease the operational temperature and increase the conversion efficiency of methanol, a novel idea was presented in which a co-solvent dichloromethane was added to the reactants. The results showed that the yield of methyl ester was improved when dichloromethane was coexistence. The effects of the co-solvent, molar ratio of methanol/oil, reaction temperature, and catalyst on the biodiesel conversion were investigated. With the optimal reaction temperature of 45 °C, methanol to oil ratio of 4.5:1, co-solvent dichloromethane of 4.0%, a 96% yield of methyl esters was observed in 2.0 h at the condition with 1.0 wt.% potassium hydroxide. The characterization and analysis of biodiesel were obtained by FT-IR, gas chromatograph and inductively coupled plasma atomic emission (ICP–OES) spectroscopy methods. The cetane number, flash point, cold filter plugging point, acid number, water content, ash content and total glycerol content were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号