首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ultrathin scale-like nickel cobaltite (NiCo2O4) nanosheets supported on nitrogen-doped reduced graphene oxide (N-rGO) are successfully synthesized through a facile co-precipitation of Ni2+ and Co2+ in the presence of sodium citrate and hexamethylenetetramine and subsequent calcination treatment. The composition and morphology of NiCo2O4 nanosheets@nitrogen-doped reduced graphene oxide (denoted as NiCo2O4 NSs@N-rGO) were characterized by Scanning electron microscope, Transmission electron microscope, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller and thermogravimetric analysis. The thickness of NiCo2O4 nanosheets anchored on the reduced graphene oxide is around 4 nm. The capacitance of NiCo2O4 NSs@N-rGO is evaluated by cyclic voltammogram and galvanostatic charge/discharge with the result that the NiCo2O4 NSs@N-rGO could deliver a specific capacitance of 1540 F g−1 after 1000 cycles at 10 A g−1.  相似文献   

2.
《Ceramics International》2016,42(15):16956-16960
In this article, V2O5 with a novel nest-like hierarchical porous structure has been synthesized by a facile solvothermal method and investigated as cathode material for lithium-ion batteries. The nest-like V2O5 with a diameter of about 1.5 µm, was composed of interconnected nanosheets with a highly porous structure. Without other modification, the as-prepared V2O5 electrode exhibited superior capacity. An initial discharge capacity of 330 mAh g−1 (at a current density of 100 mA g−1) could be delivered and a stable discharge capacity of 240 mAh g−1 after 50 cycles is maintained. The excellent performance was attributed to the hierarchical porous structure that could buffer against the local volume change and shorten the lithium-ions diffusion distance.  相似文献   

3.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

4.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

5.
Crumpled nitrogen-doped porous carbon sheets are successfully fabricated via chemical activation of polypyrrole-functionalized graphene sheets with KOH (APGs). The obtained APGs with nitrogen doping, high surface area, porous and crumpled structure exhibit exceptional electrochemical performances as the electrode material for LIBs, including a superhigh reversible specific capacity of 1516.2 mAh g−1, excellent cycling stability over 10,000 cycles, and good rate capability (133.2 mAh g−1 even at a very high current density of 40 A g−1). The chemical activation synthesis strategy might open new avenues for the design of high-performance carbon-based anode materials.  相似文献   

6.
《Ceramics International》2017,43(13):9630-9635
Transition metal sulfides have been proved as promising candidates of anode materials for sodium-ion batteries (SIBs) due to their high sodium storage capacity, low cost and enhanced safety. In this study, the amorphous CoS nanoparticle/reduced graphene oxide (CoS/rGO) composite has been fabricated by a facile one-step electron beam radiation route to in situ decorate amorphous CoS nanoparticle on the rGO nanosheets. Benefiting from the small particle size (~2 nm), amorphous structure, and electronic conductive rGO nanosheets, the CoS/rGO nanocomposite exhibits high sodium storage capacity (440 mAh g−1 at 100 mA g−1), excellent cycling stability (277 mAh g−1 after 100 cycles at 200 mA g−1, 79.6% capacity retention) and high rate capability (149.5 mAh g−1 at 2 A g−1). The results provide a facile approach to fabricate promising amorphous and ultrafine metal sulfides for energy storage.  相似文献   

7.
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a more active host, with large interlayer distances and a disordered structure, enabling it to store a higher amount of Na ions. RGO anode exhibits high capacity combined with long-term cycling stability at high current densities, leading to reversible capacity as high as 174.3 mAh g−1 at 0.2 C (40 mA g−1), and even 93.3 mAh g−1 at 1 C (200 mA g−1) after 250 cycles. Furthermore, RGO could yield a high capacity of 141 mAh g−1 at 0.2 C (40 mA g−1) over 1000 cycles.  相似文献   

8.
《Ceramics International》2017,43(2):2057-2062
A novel Ni@NiCo2O4 core/shells structure consisting of the Ni microspheres skeletons and nanosheet-like NiCo2O4 skins was designed and investigated as the electrochemical electrode for supercapacitor. Due to the unique architecture with Ni microspheres as the highly conductive cores improving the electrical conductivity of electrode and external nanosheet-like NiCo2O4 shells as the efficient electrochemical active materials facilitating the contact between the electrode and electrolyte, the as-prepared Ni@NiCo2O4 exhibited excellent electrochemical performance with high specific capacity of 597 F g−1 (1 A g−1) as well as remarkable capacitance retention of 96% (3000 cycles). These impressive results pave the way to design high-performance electrode materials for energy storage.  相似文献   

9.
《Ceramics International》2016,42(8):9433-9437
In this paper, the ultrafine tin oxides (SnO2) nanoparticles are fabricated by a facile microwave hydrothermal method with the mean size of only 14 nm. Phase compositions and microstructures of the as-prepared nanoparticles have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the ultrafine SnO2 nanoparticles are obtained to be the pure rutile-structural phase with the good dispersibility. Galvanostatic cycling and cyclic voltammetry results indicate that the first discharge capacity of the ultrafine SnO2 electrode is 1196.63  mAh g−1, and the reversible capacity could retain 272.63 mAh g−1 at 100 mA g−1 after 50 cycles for lithium ion batteries (LIBs). The excellent electrochemical performance of the SnO2 anode for LIBs is attributed to its ultrafine nanostructure for providing active sites during lithium insertion/extraction processes. Pulverization and agglomeration of the active materials are effectively reduced by the microwave hydrothermal method.  相似文献   

10.
《Ceramics International》2016,42(12):13442-13448
LiSixMn2−xO4 (x≤0.10) cathode materials were prepared via a simple solid-state process with tetraethylorthosilicate (TEOS) as the silicon source. The effects of Si-doping on the structure, morphology and electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS), respectively. All the Si-doped LiMn2O4 samples showed the intrinsic spinel structure. With the increasing of Si-doping concentration, the crystal lattice constant of LiSixMn2−xO4 samples increased and the particle size distribution becomes more uniform to some extent. Among these samples, the optimal Si-doped LiMn2O4 exhibited an initial discharge capacity of 134.6 mAh g−1 at 0.5 C, which was higher than that of the undoped spinel. After 100 cycles, the discharge capacity could still reach up to 114.5 mAh g−1 with capacity retention of 85.1%. Especially, at the high rate of 5.0 C, a high discharge capacity of 87.5 mAh g−1 was obtained while the undoped spinel only exhibited 33.7 mAh g−1. Such high performance indicated that doping the manganese sites with appropriate amount of silicon ions could effectively improve the specific capacity and cycling stability.  相似文献   

11.
Porous iron oxide (Fe2O3) nanorods anchored on nitrogen-doped graphene sheets (NGr) were synthesized by a one-step hydrothermal route. After a simple microwave treatment, the iron oxide and graphene composite (NGr-I-M) exhibits excellent electrochemical performances as an anode for lithium ion battery (LIB). A high reversible capacity of 1016 mAh g1 can be reached at 0.1 A g1. When NGr-I-M electrode was further coated by 2 ALD cycles of ultrathin Al2O3 film, the first cycle Coulombic efficiency (CE), rate performance and cycling stability of the coated electrode can be greatly improved. A stable capacity of 508 mAh g1 can be achieved at 2 A g1 for 200 cycles, and an impressive capacity of 249 mAh g1 at 20 A g1 can be maintained without capacity fading for 2000 cycles. The excellent electrochemical performance can be attributed to the synergy of porous iron oxide structures, nitrogen-doped graphene framework, and ultrathin Al2O3 film coating. These results highlight the importance of a rational design of electrode materials improving ionic and electron transports, and potential of using ALD ultrathin coatings to mitigate capacity fading for ultrafast and long-life battery electrodes.  相似文献   

12.
《Ceramics International》2017,43(2):2155-2164
The development of wearable electronics has created a surge of interest in designing flexible energy storage device with high energy density and long lifespan. In this work, we have successfully fabricated a flexible asymmetric supercapacitor (ASC) based on the NiCo2S4@NiCo2O4 nanocolumn arrays (NCAs). The nickel cobalt sulfide/oxide core-shell nanostructures were rationally synthesized through a facile stepwise approach. The NiCo2S4@NiCo2O4 NCAs based electrode delivered a high specific capacitance of 2258.9 F g−1 at a current density of 0.5 A g−1. The as-assembled flexible ASC device exhibited a high energy density of 44.06 Wh kg−1, a high power density of 6.4 kW kg−1, and excellent cycling stability by retaining 92.5% after 6000 cycles. Excitingly, the electrochemical property of the ASC device could be maintained under severe bending, indicating superior flexibility and mechanical stability. The NiCo2S4@NiCo2O4 core-shell NCAs possess enormous potential for future wearable electronic applications.  相似文献   

13.
《Ceramics International》2016,42(15):16935-16940
TiNb6O17/C composites were obtained via a facile solid-state reaction with TiO2, Nb2O5 and glucose as the starting materials. The lattice structure and morphology of the composite were investigated by X-ray diffraction, scanning electronic microscopy and transmission electron microscopy. The electrochemical properties were characterized by rate charge/discharge measurements and cyclic voltammetry. Electrochemical measurements demonstrate that the TiNb6O17/C composite exhibits electrochemical properties superior to those of pure TiNb6O17, especially at high current rates. The initial discharge capacities of TiNb6O17/C are 239, 225.1 and 199.8 mAh g−1 at 1, 5 and 10 C, respectively. Even after 500 cycles at 10 C, the capacity still remains 165.1 mAh g−1, while the capacity of TiNb6O17 is only 74.8 mAh g−1. The excellent electrochemical performance of TiNb6O17/C is attributed to the improvement of the electrical conductivity resulting from carbon coating.  相似文献   

14.
The rational integration of conductive nanocarbon scaffolds and insulative sulfur is an efficient method to build composite cathodes for high-energy-density lithium–sulfur batteries. The full demonstration of the high-energy-density electrodes is a key issue towards full utilization of sulfur in a lithium–sulfur cell. Herein, carbon nanotubes (CNTs) that possess robust mechanical properties, excellent electrical conductivities, and hierarchical porous structures were employed to fabricate carbon/sulfur composite cathode. A family of electrodes with areal sulfur loading densities ranging from 0.32 to 4.77 mg cm−2 were fabricated to reveal the relationship between sulfur loading density and their electrochemical behavior. At a low sulfur loading amount of 0.32 mg cm−2, a high sulfur utilization of 77% can be achieved for the initial discharge capacity of 1288 mAh gS−1, while the specific capacity based on the whole electrode was quite low as 84 mAh gC/S+binder+Al−1 at 0.2 C. Moderate increase in the areal sulfur loading to 2.02 mg cm−2 greatly improved the initial discharge capacity based on the whole electrode (280 mAh gC/S+binder+Al−1) without the sacrifice of sulfur utilization. When sulfur loading amount further increased to 3.77 mg cm−2, a high initial areal discharge capacity of 3.21 mAh cm−2 (864 mAh gS−1) was achieved on the composite cathode.  相似文献   

15.
《Ceramics International》2017,43(14):11354-11360
Nitrogen-doped carbon-coated Li4Ti5O12-TiO2 (LTO-TO) hybrid microspheres were prepared by heat treating the dry mixture of urea and chemically lithiated dandelion-like TiO2 microspheres in a stainless steel autoclave at 550 °C for 5 h. The hybrid materials were tested as anode of Li-ion batteries. As compared to the pristine sample, the N-doped carbon-coated LTO-TO microspheres exhibited higher specific capacity at both low and high current rates. Discharge capacities of 184 and 123 mAh g−1 were obtained at 0.2 C and 20 C, respectively. Moreover, the LTO-TO/C electrode showed excellent cycle performance, with a discharge capacity of 121.3 mAh g−1 remained after 300 cycles at 5 C, corresponding to an average capacity degradation rate of 0.073% per cycle. These high specific capacity, excellent rate capability and cycle performance demonstrated the high potentiality of the N-doped carbon-coated LTO-TO microspheres as anode material of both energy storage-type and power-type Li-ion batteries.  相似文献   

16.
A simple approach was developed for the fabrication of a Fe2O3/carbon composite by impregnating activated carbon with a ferric nitrate solution and calcinating it. The composite contains graphitic layers and 10 wt.% Fe2O3 particles of 20–50 nm in diameter. The composite has a high specific surface area of ∼828 m2 g−1 and when used as the anode in a lithium ion battery (LIB), it showed a reversible capacity of 623 mAh g−1 for the first 100 cycles at 50 mA g−1. A discharge capacity higher than 450 mAh g−1 at 1000 mA g−1 was recorded in rate performance testing. This highly improved reversible capacity and rate performance is attributed to the combination of (i) the formation of graphitic layers in the composite, which possibly improves the matrix electrical conductivity, (ii) the interconnected porous channels whose diameters ranges from the macro- to meso- pore, which increases lithium-ion mobility, and (iii) the Fe2O3 nanoparticles that facilitate the transport of electrons and shorten the distance for Li+ diffusion. This study provides a cost-effective, highly efficient means to fabricate materials which combine conducting carbon with nanoparticles of metal or metal oxide for the development of a high-performance LIB.  相似文献   

17.
《Ceramics International》2016,42(10):11851-11857
Low-cost dynamic materials for Faradaic redox reactions are needed for high-energy storage supercapacitors. A simple and cost-effective hydrothermal process was employed to synthesize amaryllis-like NiCo2S4 nanoflowers. The sample was characterized by X-ray powder diffraction, Brunauer–Emmett–Teller method, scanning electron microscopy, and transmission electron microscopy. NiCo2S4 nanoflowers were coated onto carbon fiber fabric and used as a binder-free electrode to fabricate a solid-state supercapacitor compact device. The solid-state supercapacitor exhibited excellent electrochemical performance, including high specific capacitance of 360 F g−1 at scan rate of 5 mV s−1 and high energy density of 25 W h kg−1 at power density of 168 W kg−1. In addition, the supercapacitor possessed high flexibility and good stability by retaining 90% capacitance after 5000 cycles. The high conductivity and Faradic-redox activity of NiCo2S4 nanoflowers resulted in high specific energy and power. Thus, NiCo2S4 nanoflowers are promising pseudocapacitive materials for low-cost and lightweight solid-state supercapacitors.  相似文献   

18.
Micro/meso-porous reduced graphite oxide (MMRGO) nanosheets were produced using precursor carbide-derived carbon (CDC), which was produced at a high temperature of 1200 °C, through a massive wet chemistry synthetic route involving graphite oxidation and microwave reduction. X-ray diffraction (XRD) and transmission electron microscopy (TEM) show that the MMRGO nanosheets were fabricated with 2–3 layers and ripple-like corrugations. N2 sorption isotherms confirmed that micro/meso-pores coexisted in the RGO sample from CDC. In the anode application of Li-ion batteries, this RGO sample had an enhanced capacity performance at the 0.1 C rate and 1 C rate, with ∼1200 mAh g−1 at the 100th cycle and ∼1000 mAh g−1 at the 200th cycle, respectively.  相似文献   

19.
《Ceramics International》2015,41(8):9527-9533
A TiO2(B) nanosheets/SnO2 nanoparticles composite was prepared by the hydrothermal and chemical bath deposition (CBD) methods, and its electrochemical properties were investigated for use as the anode material of a lithium-ion battery. The as-prepared composites consisted of monoclinic-phase TiO2(B) nanosheets and cassiterite structure SnO2 nanoparticles, in which SnO2 nanoparticles were uniformly decorated on the TiO2(B) nanosheets. The TiO2(B)/SnO2 composites showed a higher reversible capacity and better durability than that of the pure TiO2(B) for use as a battery anode. The composite electrodes exhibiting a high initial discharge capacity of 2239.1 mAh g−1 and a discharge capacity of more than 868.7 mAh g−1 could be maintained after 50 cycles at 0.1 C in a voltage range of 1.0–3.0 V at room temperature. The results suggest that TiO2(B) nanosheets coated with SnO2 could be suitable for use as a stable anode material for lithium-ion batteries. In addition, the coulombic efficiency of the nanosheets remains at an average of 93.1% for the 3rd–50th cycles.  相似文献   

20.
《Ceramics International》2017,43(8):6232-6238
Uniform Nb2O5 nanospheres/surface-modified graphene (SMG) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. The microstructure and morphology of composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscope techniques. The experimental results showed that Nb2O5 nanospheres were tightly and uniformly grown on the surface of SMG nanosheets. Nb2O5 nanospheres/SMG composites exhibited an impressive reversible capacity of 404.6 mA h g−1 at the current density of 40 mA g−1 after 100 cycles, and an excellent rate capacity of 345.5 mA h g−1 at the current density of 400 mA g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号