首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Effects of in situ synthesized silica and titania nanoparticles, 5 and 20-40 nm in diameter, respectively, on glass transition and segmental dynamics of poly(dimethylsiloxane) networks were studied by employing differential scanning calorimetry, thermally stimulated depolarization currents and broadband dielectric relaxation spectroscopy techniques. Strong interactions between the well dispersed fillers and the polymer suppress crystallinity and affect significantly the evolution of the glass transition in the nanocomposites. Next to the α relaxation associated with the glass transition of the bulk amorphous polymer fraction, two more segmental relaxations were recorded, originating from polymer chains restricted between condensed crystal regions (αc-relaxation) and the semi-bound polymer in an interfacial layer with strongly reduced mobility due to interactions with hydroxyls on the nanoparticle surface (α′ relaxation), respectively. Interactions with the polymer were found to be stronger in the case of titania than silica, leading to an estimated interaction length of around 2 nm for silica and at least double for titania nanocomposites.  相似文献   

2.
Various bionanocomposites were prepared by dispersing fumed silica (SiO2) nanoparticles in biocompatible polymers like poly(vinyl pyrrolidone) (PVP), chitosan (Chi), or poly(vinyl alcohol) (PVA). For the bionanocomposites preparation, a solvent evaporation method was followed. SEM micrographs verified fine dispersion of silica nanoparticles in all used polymer matrices of composites with low silica content. Sufficient interactions between the functional groups of the polymers and the surface hydroxyl groups of SiO2 were revealed by FTIR measurements. These interactions favored fine dispersion of silica. Mechanical properties such as tensile strength and Young's modulus substantially increased with increasing the silica content in the bionanocomposites. Thermogravimetric analysis (TGA) showed that the polymer matrices were stabilized against thermal decomposition with the addition of fumed silica due to shielding effect, because for all bionanocomposites the temperature, corresponding to the maximum decomposition rate, progressively shifted to higher values with increasing the silica content. Finally, dynamic thermomechanical analysis (DMA) tests showed that for Chi/SiO2 and PVA/SiO2 nanocomposites the temperature of β‐relaxation observed in tanδ curves, corresponding to the glass transition temperature Tg, shifted to higher values with increasing the SiO2 content. This fact indicates that because of the reported interactions, a nanoparticle/matrix interphase was formed in the surroundings of the filler, where the macromolecules showed limited segmental mobility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Poly(methyl methacrylate)/silica (PMMA/SiOx) nanocomposites were synthesized via sol–gel method and studied by various techniques. The dispersion of the silica particles (10–100 nm) in the matrix was probed by transmission electron microscopy (TEM), while solid‐state NMR and Raman spectroscopy detected the formation of an inorganic network with high degree of crosslinking. To elucidate the impact of the filler on the molecular dynamics of the PMMA, different methods were used; namely differential scanning calorimetry, thermally stimulated depolarization current and broadband dielectric relaxation spectroscopy. All three methods observed a significant impact of the nanoparticles on the segmental dynamics of the matrix, which was expressed as an increase of the glass transition temperature (Tg) in terms of calorimetry and as a shift of the α (segmental) relaxation to lower frequencies in terms of dielectric spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The influence of nanoconfinement on segmental relaxation behavior of poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile) miscible blend and its nanocomposites with spherical and layered nanoparticles have been investigated. Dynamic mechanical analysis was employed to examine the effect of geometry of nanoparticles on the temperature dependence and relaxation function breadth of segmental dynamics (α-relaxation) in the glass transition region. The maxima of the loss modulus curves were used to fit to the Vogel–Fulcher–Tamman equation to describe the temperature dependence of the characteristic relaxation times. Furthermore, the T g-normalized semi-logarithmic Arrhenius plots (fragility plots) were exploited to indicate the changes in cooperative segmental motions across the glass transition. The master curves for relaxation modulus were also constructed for each sample as a function of time using the time–temperature superposition principle. The investigated nanocomposites showed a narrower segmental dispersion in the glass transition region compared to the neat systems. The relaxation modulus master curves were fitted by the Kohlrausch–Williams–Watts (KWW) function. It was observed that the distribution parameter of segmental relaxation time increased with addition of nanoparticles which was correlated with a decrease in fragility index. In addition, the increase of the KWW distribution parameter (β KWW) for spherical silica nanocomposites was less than that for nanocomposites prepared with layered silicates (organoclay).  相似文献   

5.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier. The surface‐modified silica (SiO2‐OA) nanoparticles were used to disperse in the poly(amic acid) solutions of a commercial polyimide (PI), used for two‐layer film, and thermally imidized to form a series of PI/silica nanocomposites. The effects of the addition of SiO2‐OA nanoparticles on the properties of the as‐prepared PI/silica nanocomposites were studied. The results indicated that the as‐prepared PI/silica nanocomposites exhibited improvements in the dynamic mechanical property, thermal stability, water resistance, and thermal expansion. POLYM. COMPOS. 28:575–581, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A.C. Comer 《Polymer》2010,51(22):5245-5254
The dynamic relaxation characteristics of poly(ether imide) and poly(methyl methacrylate) nanocomposites based on native and surface-modified (i.e., hydrophobic) fumed silicas were investigated by dynamic mechanical analysis and dielectric spectroscopy. The nanocomposites displayed a dual glass transition behavior in the dynamic mechanical studies encompassing a bulk polymer glass transition (close to Tg for the unfilled polymer), and a second, higher-temperature transition reflecting relaxation of polymer chain segments constrained owing to their proximity to the particle surface. The position and intensity of the higher-temperature transition varied with particle loading and surface chemistry, and reflected the relative populations of segments constrained or immobilized at the particle-polymer interface. Dielectric measurements, which were used to probe the time-temperature response across the local sub-glass relaxations, indicated no variation in relaxation characteristics with particle loading.  相似文献   

8.
The molecular dynamics of a series of poly(dimethylsiloxane) networks filled with silica nanoparticles synthesized in situ was investigated using thermally stimulated depolarization currents, broadband dielectric relaxation spectroscopy and differential scanning calorimetry. The techniques used cover together a broad frequency range (10−3-109 Hz), thus allowing to gain a more complete understanding of the effects of the nanoparticles on the chain dynamics. In addition to the α relaxation associated with the glass transition of the polymer matrix, we observe in dielectric measurements a slower α relaxation which is assigned to polymer chains close to the polymer/filler interface whose mobility is restricted due to interactions with the filler surface. The thickness of the interfacial layer is estimated to be about 2.1-2.4 nm. Differential scanning calorimetry shows a change in the shape of the glass transition step, as well as a decrease in both the degree of crystallinity and the crystallization rate by the addition of silica.  相似文献   

9.
T.H. Hsieh  K. Masania  S. Sprenger 《Polymer》2010,51(26):6284-6294
The present paper considers the mechanical and fracture properties of four different epoxy polymers containing 0, 10 and 20 wt.% of well-dispersed silica nanoparticles. Firstly, it was found that, for any given epoxy polymer, their Young’s modulus steadily increased as the volume fraction, vf, of the silica nanoparticles was increased. Modelling studies showed that the measured moduli of the different silica-nanoparticle filled epoxy polymers lay between upper-bound values set by the Halpin-Tsai and the Nielsen ‘no-slip’ models, and lower-bound values set by the Nielsen ‘slip’ model; with the last model being the more accurate at relatively high values of vf. Secondly, the presence of silica nanoparticles always led to an increase in the toughness of the epoxy polymer. However, to what extent a given epoxy polymer could be so toughened was related to structure/property relationships which were governed by (a) the values of glass transition temperature, Tg, and molecular weight, Mc, between cross-links of the epoxy polymer, and (b) the adhesion acting at the silica nanoparticle/epoxy-polymer interface. Thirdly, the two toughening mechanisms which were operative in all the epoxy polymers containing silica nanoparticles were identified to be (a) localised shear bands initiated by the stress concentrations around the periphery of the silica nanoparticles, and (b) debonding of the silica nanoparticles followed by subsequent plastic void growth of the epoxy polymer. Finally, the toughening mechanisms have been quantitatively modelled and there was good agreement between the experimentally-measured values and the predicted values of the fracture energy, Gc, for all the epoxy polymers modified by the presence of silica nanoparticles. The modelling studies have emphasised the important roles of the stress versus strain behaviour of the epoxy polymer and the silica nanoparticle/epoxy-polymer interfacial adhesion in influencing the extent of the two toughening mechanisms, and hence the overall fracture energy, Gc, of the nanoparticle-filled polymers.  相似文献   

10.
Composites of polydimethylsiloxane (PDMS) rubber modified by three kinds of polyhedral oligomeric silsesquioxanes (POSSs) as well as fumed silica were prepared through solution blending and then open two‐roll mill blending with curing agent. Subsequently, the influences of POSS on mechanical and thermal properties of the resulting composites were investigated in detail. The addition of POSS significantly enhanced the tensile strength and elongation at break of the composite but lowered the tensile modulus, which could be ascribed to the interruption of silica–silica and silica–PDMS interactions. Octamethylsilsesquioxane (OMS)/silica/PDMS and octaphenylsilsesquioxane (OPS)/silica/PDMS composites did not show desirable mechanical and thermal properties. Nevertheless, heptaphenylvinylsilsesquioxane (VPS)/silica/PDMS composite with 5 wt % VPS exhibited enhanced glass transition temperature (Tg), mechanical properties, and thermal stability. Further studies revealed that more VPS unfavorably affected properties of the composite. Scanning electron microscope and X‐ray diffraction demonstrated that owing to the grafting reaction, 5 wt % VPS in the rubber matrix could form microcrystal domains the most effectively. Thus, the improved mechanical properties and thermal stability just resulted from the the formation of microcrystal domains and the increase in stiffness of PDMS chains because of the graft of VPS onto PDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42173.  相似文献   

11.
Polycarbonate/silica nanocomposite membranes at low silica loading were fabricated by solution blending and solvent evaporation technique. The functionalized silica nanoparticles used were synthesized by co‐condensing hydrolyzed tetraethylorthosilicate with 3‐aminopropyl trimethoxysilane in the sol–gel process. The membranes morphology, composition, surface, structure, thermal and mechanical properties were analyzed by the standard characterization techniques. The gas permeation tests were conducted in four‐channel permeation cells. Field emission scanning electron microscopy results reveal that membranes above 3 wt % silica content formed distinguishable voids and agglomerates. Fair distribution of silica nanoparticles and absence of residual solvents were observed by energy dispersive X‐ray and thermogravimetric analysis. Fourier transform infrared spectroscopy spectra confirmed the presence of new functional groups (N? H) and (O? H) bonds. The X‐ray diffraction pattern revealed the polymer‐particle interactions, the formation of rigidified polymer chain, and nanostructured silicon crystals. Further, the thermogravimetric analysis results revealed thermal stability enhancement while differential scanning calorimetry results of increased glass transition temperatures confirmed the presence of rigidified polymer chain. Furthermore, enhancements in mechanical strength of the membranes were observed. Moreover, at all feed pressures, increased CO2, N2, and CH4 gas permeation was observed. At 6 bar feed pressure, the CO2/N2 and CO2/CH4 ideal selectivities of PC membranes with 3 wt % silica loading have increased from 19.2 to 38.0 and 29.2, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45310.  相似文献   

12.
Polyamide‐6/silica nanocomposites were prepared via an in situ polymerization route using silicic acid as the precursor of silica, which was extracted from water glass. Scanning electron microscopy observations showed that the silica particles were well dispersed in the polyamide‐6 matrix on the nanometer scale, which demonstrated that this method could effectively avoid agglomeration of the inorganic particles. The coupling agent, (γ‐aminopropyl) triethoxysilane, was added to introduce interfacial interactions between the silica and the polymer matrix, which led to an increased graft of polymer on the silica surface and made the material display higher performance. It was found that the incorporation of the inorganic component significantly increased the melt viscosity, tensile strength, Young's modulus, thermal decomposition temperature, glass transition temperature and Vicat softening temperature of the polyamide‐6 resin. The reinforcement of the silica particles was clearly demonstrated. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
This work focuses on the influence of weathering factors—UV radiation, humidity, and temperature on the structure and morphology of poly(vinyl chloride)/montmorillonite (PVC/MMT) nanocomposites obtained by melt blending. It has been observed that organically modified MMT (OMMT) deteriorates the weathering resistance, the thermal behavior, as well as the long‐term stability of PVC. Decomposition of the organic modifier of MMT causes substantial color changes in the PVC nanocomposites as it facilitates the dehydrochlorination process of the polymer. However, the nonmodified MMT provides some stabilization during PVC weathering. The nanocomposites after annealing are characterized by higher glass transition temperature. The increase in heat capacity step (Δcp) during glass transition suggests that in the PVC composites with nonmodified MMT stronger molecular interactions between the polymer and clay platelets occur than in PVC/OMMT nanocomposites. The scanning electron microscopy images on the surface and the cross section show that thermal aging and weathering proceed by different mechanisms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42090.  相似文献   

14.
A series of poly(methyl methacrylate) (PMMA) nanocomposites were synthesized using free radical polymerization in bulk, by addition of 1 vol% of oxide nanoparticles (silica, alumina, and titania), differing in the nature and type. The influence of nanofiller presence on the kinetics of methyl methacrylate (MMA) free radical polymerization was investigated. For this purpose, the kinetic model that includes the contribution from the first‐order reaction and the autoacceleration was applied on data obtained following the isothermal polymerization at 70°C by differential scanning calorimetry (DSC). The effect of the size and the surface nature of nanofillers on the interfacial layer thickness (d), as well as the influence of d on the glass transition temperature (Tg) of PMMA hybrid materials was studied. It was found that hydrophilic particles accelerated the initiator decomposition and affected the monomer polymerization on the surface, which caused the formation of thicker interfacial layer compared to the one around hydrophobic fillers. The addition of smaller nanoparticles size decreased the glass transition temperature of pure poly(methyl metacrylate). The linear increase of PMMA Tg value with increasing the polymeric interfacial layer was determined. The Tg values of pure PMMA and PMMA nanocomposite with d of 1.4 nm were estimated to be the same. POLYM. COMPOS. 34:1342–1348, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
The present work involved a thorough study on silane-modified silica filler with special focus on its chemical interaction with polydimethylsiloxanes (PDMS) and the structural model of the modified filler. The samples prepared by addition of modified silica were characterized by Fourier transform infrared spectroscopy (FTIR), specific surface test, scanning electron microscopy (SEM) and fluorescent microscope. FTIR results confirmed the successful silica surface modification with silane coupling agent. The sample containing 80?phr (parts per hundreds of rubber) modified filler with weak ratio of Si?COH/Si?CC group absorbance areas (A 1/A 0) showed weak formation of filler agglomerates while a stronger interfacial interaction could take place between the modified silica and PDMS. Specific surface results showed that the dispersion of silica can be improved when the amount of silane modifier to silica reached 2.0?wt%. SEM and fluorescent microscope showed that the filler aggregation was observed in cases of higher silica loading. As expected, when the silica with surface treatment was compared with those without surface modification, the filler particles were found to be fairly well dispersed in PDMS matrix.  相似文献   

16.
17.
Poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride) (PVVM)/silica nanocomposites were prepared by the suspension radical copolymerization of the monomers in the presence of fumed silica premodified with γ‐methylacryloxypropl trimethoxy siliane. Morphological observation showed that the silica particles of nanometer scale were well dispersed in the copolymer matrix of the nanocomposites films, whereas silica particles tended to agglomerate in the composites films prepared by the solution blending of PVVM with silica. The experimental results show that the thermal stability, glass‐transition temperature, tensile strength, and Young's modulus were significantly enhanced by the incorporation of silica nanoparticles. The enhancement of properties was related to the better dispersion of silica particles in polymer matrix and the interaction between the polymer chains and the surfaces of the silica particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The segmental dynamics of functional graphene (fGR)/poly(ether sulfone ether ketone ketone) (PESEKK) nanocomposites were investigated via differential scanning calorimetry and dynamic mechanical analysis (DMA) measurements. First, fGR was prepared using graphene oxide and sodium dodecylbenzene sulfonate. Subsequently, a series of fGR/PESEKK nanocomposites were prepared through solution blend. When the sulfone groups were introduced into the segments of PESEKK polymers, the glass transition temperature (Tg) of PESEKK was higher than that of free sulfone functionalized poly(ether ketone ketone). The fGR/PESEKK nanocomposites displayed a uniform nanostructure because of the strong interfacial interaction between fGR and PESEKK. With the increase in the fGR contents, the Tg values of fGR/PESEKK nanocomposites decreased. Two loss factor peaks were noted in the fGR/PESEKK nanocomposites, which were characterized via DMA. The α′‐relaxation of the nanocomposites at low temperature was assigned to polymer chains close to the polymer/filler interface with mobility higher than that in the bulk unfilled PESEKK (α‐relaxation). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44391.  相似文献   

19.
BACKGROUND: The physical properties of polyamides can be enhanced through incorporation of inorganic micro‐ and nanofillers such as silica nanoparticles. Transparent sol‐gel‐derived organic‐inorganic nanocomposites were successfully prepared by in situ incorporation of a silica network into poly(trimethylhexamethylene terephthalamide) using diethylamine as catalyst. Thin films containing various proportions of inorganic network obtained by evaporating the solvent were characterized using mechanical, dynamic mechanical thermal and morphological analyses. RESULTS: Tensile measurements indicate that modulus as well as stress at yield and at break point improved while elongation at break and toughness decreased for the hybrid materials. The maximum value of stress at yield point (72 MPa) was observed with 10 wt% silica while the maximum stress at break point increased up to 66 MPa with 20 wt% silica relative to that of pure polyamide (44 MPa). Tensile modulus was found to increase up to 2.59 GPa with 10 wt% silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica content. The maximum increase in the Tg value (144 °C) was observed with 20 wt% silica. Scanning electron microscopy investigation gave the distribution of silica, with an average particle size ranging from 3 to 24 nm. CONCLUSION: These results demonstrate that nanocomposites with high mechanical strength can be prepared through a sol‐gel process. The increase in the Tg values suggests better cohesion between the two phases, and the morphological results describe a uniform dispersion of silica particles in the polymer matrix at the nanoscale. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
微滴乳液聚合制备PDMS/SiO2纳米复合材料   总被引:1,自引:1,他引:0       下载免费PDF全文
杨磊  许湧深  邱守季  张娅 《化工学报》2013,64(4):1473-1477
采用超声分散的方法,以少量八甲基环四硅氧烷(D4)对硅溶胶粒子进行表面接枝改性。然后在改性硅溶胶存在下,以十二烷基苯磺酸(DBSA)为乳化剂兼催化剂进行D4的微滴乳液聚合,得到聚硅氧烷(PDMS)/二氧化硅(SiO2)纳米复合乳液。采用FTIR、TGA、纳米粒度仪、TEM和拉力机分别对样品进行了表征。结果表明:采用超声分散的方法,能够有效地实现硅溶胶粒子的表面改性。通过微滴乳液聚合得到的复合乳胶粒是聚合物包覆二氧化硅粒子的核壳结构形态。SiO2的引入提高了有机硅复合膜力学性能,增强了热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号