首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of 5,5′‐diformyl‐2,2′‐difuran (IUPAC name: [2,2′‐bifuryl]‐5,5′‐dicarbaldehyde) in good yields by the intermolecular coupling of 2‐furfural and 5‐bromo‐2‐furfural has been achieved. Optimum yields were obtained when mixtures of the substrates in acetonitrile were treated with polyvinylpyridine powder (Reillex 402), and irradiated with UV light through a quartz filter. Low yields of coupling product were obtained in the absence of this base or if hydrocarbon solvents were used. A mechanistic pathway involving a transient exciplex intermediate has been proposed.  相似文献   

2.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Two new aromatic diamines, 2,2′‐dibromo‐4,4′‐oxydianiline (DB‐ODA 4 ) and 2,2′,6,6′‐tetrabromo‐4,4′‐oxydianiline (TB‐ODA 5 ), have been synthesized by oxidation, bromination, and reduction of 4,4′‐oxydianiline (4,4′‐ODA). Novel polyimides 6a–f and 7a–f were prepared by reacting DB‐ODA ( 4 ) and TB‐ODA ( 5 ) with several dianhydrides by one‐step method, respectively. The inherent viscosities of these polyimides ranged from 0.31 to 0.99 dL/g (0.5 g/dL, in NMP at 30°C). These polyimides showed enhanced solubilities compared to those derived from 4,4′‐oxydianiline and corresponding dianhydrides. Especially, polyimides 7a , derived from rigid PMDA and TB‐ODA ( 5 ) can also be soluble in THF, DMF, DMAc, DMSO, and NMP. These polyimides also exhibited good thermal stability. Their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 251 to 328°C. When the same dianhydrides were used, polyimides 7 containing four bromide substituents had higher glass transition temperatures than polyimides 6 containing two bromide substituents. The effects of incorporating more polarizable bromides on the refractive indices of polyimides were also investigated. The average refractive indices (nav) measured at 633 nm were from 1.6088 to 1.7072, and the in‐plane/out‐of‐plane birefringences (Δn) were from 0.0098 to 0.0445. It was found that the refractive indices are slightly higher when polyimides contain more bromides. However, this effect is not very obvious. It might be due to loose chain packing resulted from bromide substituents at the 2,2′ and 2,2′,6,6′ positions of the oxydiphenylene moieties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Addition of allyl halides to the organolithium species derived from lithiation of Ntert‐butoxycarbonylindoline with sec‐butyllithium (sec‐BuLi) and tetramethylethylenediamine (TMEDA) occurs regioselectively by SN2 allylation. In contrast, the organolithium species can be transmetalated to the mixed zinc cuprate that undergoes regioselective SN2′ allylations. Transmetalation to the organozinc chloride allows a Negishi‐type cross‐coupling reaction with aryl bromides using palladium catalysis with triphenylphosphine (PPh3) as ligand. The chemistry was applied to a very short synthesis of 7‐prenylindole and of the alkaloid vasconine.  相似文献   

5.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

6.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Poly(2,2′‐imidazole‐5,5′‐bibenzimidazole) (PBI‐imi) was synthesized via the polycondensation between 3,3′,4,4′‐tetraaminobiphenyl and 4,5‐imidazole‐dicarboxylic acid. Effects of the reaction conditions on the intrinsic viscosity of the synthesized polymers were studied. The results show that the molecular weight of the polymers increases with increasing monomer concentration and reaction time, and then levels off. With higher reaction temperature, the molecular weight of the polymer is higher. With the additional imidazole group in the backbone, PBI‐imi shows improved phosphoric acid doping ability, as well as a little higher proton conductivity when compared with widely used poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] (PBI‐ph).Whereas, PBI‐imi and PBI‐ph have the similar chemical oxidation stability. PBI‐imi/3.0 H3PO4 composite membranes exhibit a proton conductivity as high as 10–4 S cm–1 at 150 °C under anhydrous condition. The temperature dependence of proton conductivity of acid doped PBI‐imi can be modeled by an Arrhenius equation.  相似文献   

8.
Copolymers of poly(2,5‐benzimidazole) (ABPBI) and poly[2,2′‐(p‐phenylene)‐5,5′‐bibenzimidazole] (pPBI) were synthesized for use as fuel cell membranes to take advantage of the properties of both constituents. The composition of the copolymers were controlled by changing the feed ratio of 3,4‐diaminobenzoic acid and terephthalic acid with 3,3′‐diaminobenzidine in the polycondensation reaction. The copolymer membranes showed higher conductivities, better mechanical properties, and larger acid absorbing abilities than commercial poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] membranes.

  相似文献   


9.
We synthesized 4,4′,5,5′‐tetranitro‐2,2′‐bi‐1H‐imidazole (TNBI), which may serve as a new energetic filler for high explosive formulations. TNBI was synthesized by treating an excess amount of sodium nitrate with 2,2′‐bi‐1H‐imidazole (BI), which was produced from glyoxal and ammonia gas. The overall synthetic yield was 32%. The synthesized TNBI was characterized by performing various chemical analyses including NMR, IR, and CHN analyses. Small scale sensitivity tests were carried out at both research institutes (ADD and ARDEC). The sensitivity results varied from ‘more sensitive than RDX’ to ‘substantially less sensitive than RDX’ according to the purity and conditions of the test samples. Based on our careful characterizations, this large variation in sensitivity was attributed to the moisture content that was present in the test samples due to a hygroscopic nature of TNBI. We also found that the hygroscopic nature of TNBI changed significantly due to the amount of impurities, especially sulfates.  相似文献   

10.
A fluorescent conjugated polymer was synthesized by the polymerization of 1,4‐dibromo‐2,3‐bisbutoxynaphthalene ( M‐2 ) with 5,5′‐divinyl‐2,2′‐bipyridine ( M‐3 ) via Heck reaction. The conjugated polymer shows strong blue–green fluorescence because of the extended π‐electronic structure between the repeating unit 2,3‐bisbutoxynaphthyl group and the conjugated linker 2,2′‐bipyridyl (bpy = 2,2′‐bipyridine) moiety via vinylene bridge. The responsive properties of the conjugated polymer on transition metal ions were investigated by fluorescent and UV–vis spectra. The results show that Cu2+ and Ni2+ can form nonradiative metal‐to‐ligand charge‐transfer complexes with the polymer, whereas, Zn2+ and Cd2+ do not produce the pronounced differences from the polymer fluorescence and UV–vis spectra. The fluorescent quenching can probably be attributed to the intramolecular photoinduced electron transfer (PET) or photoinduced charge transfer (PCT). The results can also suggest that 2,2′‐bipyridyl moiety in the main chain backbone of the conjugated polymer can act as the recognition site of a special fluorescent chemosensor for sensitive detection of transition metal ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A chiral conjugated polymer can be obtained by the polymerization of (S)‐6,6′‐dibromo‐2,2′‐binaphtho‐20‐crown‐6 and 1,4‐divinyl‐2,5‐dibutoxybenzene via a palladium‐catalyzed Heck cross‐coupling reaction. The chiral conjugated polymer shows strong green‐blue fluorescence. The responsive properties of the chiral polymer to metal ions were investigated using fluorescence and UV‐visible absorption spectra. K+, Pb2+, Cd2+ and Ba2+ enhance the fluorescence of the polymer; in contrast, Hg2+ causes effective quenching of the fluorescence of the polymer. The obvious influences on the fluorescence indicate that the 2,2′‐binaphtho‐20‐crown‐6 moiety plays an important role in fluorescence recognition for Hg2+ due to the effective photo‐induced electron transfer or charge transfer between the conjugated polymer backbone and the receptor ions. The responsive properties of the polymer to metal ions show that the chiral conjugated polymer incorporating 2,2′‐binaphtho‐20‐crown‐6 moieties in the main‐chain backbone as recognition sites can act as an excellent fluorescent probe for the sensitive detection of Hg2+. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
We performed theoretical studies to predict the molecular structure, molecular properties, and explosive performance of 4,4′,5,5′‐tetranitro‐2,2′‐bi‐1H‐imidazole (TNBI). High levels of ab initio and density functional theories were employed to predict the molecular structure of TNBI. Predicted TNBI structure was in good agreement with that observed by X‐ray crystallography. Heat of formation in the solid phase at 298 K was predicted to be 270.3 kJ/mol. Density of TNBI was predicted to be 1.919–1.956 g/cm3 depending upon the parameter sets of group additivity method. By using these values as input data, we estimated detonation velocity and C–J pressure to be 8.69–8.80 km/s and 34.5‐36.1 GPa, respectively. Impact sensitivity of TNBI was predicted to be 33 cm.  相似文献   

13.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

14.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
A variety of substituted 2,2′‐bipyridines were synthesized by a 1,2‐bis(diphenylphosphino)ethane (dppe)/cobalt chloride hexahydrate (CoCl2⋅6 H2O)/zinc‐catalyzed [2+2+2] cycloaddition reaction of diynes and nitriles, with all reactions exhibiting exclusive regioselectivity. Thus, symmetrical and unsymmetrical 1,6‐diynes and 2‐cyanopyridine reacted in the presence of 5 mol % of dppe, 5 mol % of CoCl2⋅6 H2O and 10 mol % of zinc powder to provide the corresponding 2,2′‐bipyridines. Under identical reaction conditions, 1‐(2‐pyridyl)‐1,6‐diynes and nitriles reacted smoothly with exclusive regioselectivity to produce 2,2′‐bipyridines in good yield. 2,2′‐Bipyridines were also obtained by the double [2+2+2] cycloaddition reaction of 1,6,8,13‐tetraynes with nitriles. Similarly, 2,2′:6′,2′′‐terpyridines were synthesized from 1‐(2‐pyridyl)‐1,6‐diyne and 2‐cyanopyridine. The regiochemistry observed can be explained by considering the electronic nature of cobaltacyclopentadiene intermediates and nitriles. A survey of the exclusive regiochemical trend gives reasonable credence to the synthetic potential of the present method.  相似文献   

16.
Recent studies on conducting polymers have demonstrated that polymers of 3‐substituted thiophene produce very stable compounds. Although this kind of substitution improves the regularity, structural defects still exist. To overcome this drawback, the polymerization of 3,4‐disubstituted thiophene is proposed as a convenient way of synthesizing regular, highly conjugated conductive polymers. Our interest is thus focused on the synthesis of tetra‐substituted thiophene derivatives, their polymerization, electrochemical properties, spectral characteristics, oxidizing potential, and the feasibility of photocells development. In this article, we report the synthesis and characterization of 3′,4′‐dibromo‐2,2′:5′,2″‐terthiophene which, as such or modified, may be a good starting product for obtaining new monomers of 3′,4′‐disubstituted terthiophenes, that would allow the effect of the substituents on the properties of the respective polymers to be studied. In addition, the monomer was electropolymerized and the resulting deposit was electrochemically and morphologically characterized. Two conclusions were drawn: first, more uniform and homogeneous layers than those of polythiophene are obtained; second, the thin layers of the polymer, electron acceptors, absorb in the visible. Finally, photocells were assembled to investigate their photovoltaic effect. Although the so prepared solar cells showed some photovoltaic effect, the yield was low.© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5314–5321, 2006  相似文献   

17.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

18.
A new diamine, 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐diaminodiphenyl ether (FPAPE) was synthesized through the Suzuki coupling reaction of 2,2′‐diiodo‐4,4′‐dinitrodiphenyl ether with 3,4,5‐trifluorophenylboronic acid to produce 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐dinitrodiphenyl ether (FPNPE), followed by palladium‐catalyzed hydrazine reduction of FPNPE. FPAPE was then utilized to prepare a novel class of highly fluorinated all‐aromatic poly(ether‐imide)s. The chemical structure of the resulting polymers is well confirmed by infrared and nuclear magnetic resonance spectroscopic methods. Limiting viscosity numbers of the polymer solutions at 25 °C were measured through the extrapolation of the concentrations used to zero. Mn and Mw of these polymers were about 10 000 and 25 000 g mol?1, respectively. The polymers showed a good film‐forming ability, and some characteristics of their thin films including color and flexibility were investigated qualitatively. An excellent solubility in polar organic solvents was observed. X‐ray diffraction measurements showed that the fluoro‐containing polymers have a nearly amorphous nature. The resulting polymers had Tg values higher than 340 °C and were thermally stable, with 10% weight loss temperatures being recorded above 550 °C. Based on the results obtained, FPAPE can be considered as a promising design to prepare the related high performance polymeric materials. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
A study for determining the scope and limitations of a procedure for synthesising ethylene acetals from haloketones is presented. The method uses 1,2‐bis(trimethylsilyloxy)ethane, BTSE, as reagent and Nafion®‐TMS as catalyst. Two procedures have been tested: (A) stoichiometric amounts of the haloketone and BTSE and a catalytic amount of Nafion®‐TMS were heated to reflux in chloroform solution, and (B) stoichiometric amounts of the reactants and a catalytic amount of Nafion®‐TMS were heated to 90–100 °C in the absence of solvent. The following ketones have been tested: 2‐bromo‐1‐phenyl‐1‐ethanone, 2‐bromo‐cyclopentenone, 3‐bromo‐3‐methyl‐2‐butanone, 3‐chloro‐3‐methyl‐2‐butanone, 1‐bromo‐3,3‐dimethyl‐2‐butanone, 1‐chloro‐3,3‐dimethyl‐2‐butanone, 2‐bromocyclohexanone, 2‐chloro‐1‐cyclohexyl‐1‐ethanone, 1,1‐dibromo‐3,3‐dimethyl‐2‐butanone, 1,3‐dibromo‐3‐methyl‐2‐butanone, 1,3‐dibromo‐2‐butanone, 1,3‐dibromo‐2‐propanone, 2‐chloro‐1‐phenyl‐1‐ethanone, and endo‐2‐bromocamphor. Yields were in the range 57–100% with the exceptions of endo‐2‐bromocamphor which afforded <10% yield and the dibromoketones 1,1‐dibromo‐3,3‐dimethyl‐2‐butanone and 1,3‐dibromo‐3‐methyl‐2‐butanone for which the method failed. Factors determining the scope and limitations are briefly discussed. Full experimental details and spectroscopic data of the acetals are given.  相似文献   

20.
(S)‐3‐Vinyl‐2,2′‐bisalkoxy‐1,1′‐binaphthyl ( 3 ) was synthesized via the Wittig reaction. Radical polymerization of all the monomers can take place smoothly in the temperature region tested. These polymers (poly‐ 3 ) showed very large specific optical rotations which were four times as large as those of the corresponding monomers 3 . Poly‐ 3 displayed optical rotations and Cotton effects in the UV?visible absorption region of side groups which were different from the corresponding monomers 3 and the model compounds (S)‐3‐ethyl‐2,2′‐bisalkoxy‐1,1′‐binaphthyl ( 4 ). These facts imply the formation of helicity of the main chain and the helical conformations were quite stable demonstrated by the unchanged pattern of temperature variable circular dichroism spectra. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号