首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Detailed analysis of the microstructure of grain boundaries, especially triple-grain and multiple-grain junctions, in ZnO varistor materials has been performed using transmission electron microscopy. Different polymorphs of Bi2O3 are shown to exhibit different wetting properties on ZnO interfaces. Recent investigations suggest that the equilibrium configuration consists of crystalline Bi2O3 in the triple-grain and multiple-grain junctions and an amorphous bismuth-rich film in the ZnO/ZnO grain boundaries. The present investigation supports this suggestion for δ-Bi2O3 and also adds to the microstructural image and wetting properties of α-Bi2O3.  相似文献   

2.
This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.  相似文献   

3.
The effect of sintering temperature on the microstructure and crystal phases of the intergranular praseodymium oxides in ZnO varistor ceramics was investigated using transmission electron microscopy and high-resolution electron microscopy. The ZnO grains were three-dimensionally separated from the intergranular praseodymium oxides. On the basis of microdiffraction analyses of the intergranular layer, the phase transformation from fcc-Pr6O11 into hcp-Pr2O3 was found when the sintering temperature increased from 1300° to 1350°C. The defect reaction equation and the decrease of donor concentration with increasing sintering temperature can verify the certainty of phase transition during the liquid-phase sintering observed by transmission elecron microscopy. Additionally, on the basis of the small variations of the breakdown voltage per grain boundary, the number of active grain boundaries is not a dominant factor for the donor concentration dependence on the sintering temperature.  相似文献   

4.
A High Entropy (Hf-Ta-Zr-Nb)C Ultra-High Temperature Ceramic (UHTC) was fabricated by ball milling and Spark Plasma Sintering (SPS) with a density of 99%. The microstructure characteristics were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) in combination with electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). Atomic structure and local chemical disorder was determined by means of scanning transmission electron microscopy (STEM) in conjunction with energy dispersive X-ray spectroscopy (EDS). According to the results, high purity, dense and homogeneous high entropy carbide with Fm-3?m crystal structure was successfully produced. The grain size ranged from approximately 5?μm to 25?μm with average grain size of 12?μm. Chemical analyses proved that all grains had the same chemical composition at the micro as well as on the nano/atomic level without any detectable segregation. The approximately 1.5?nm thin amorphous grain boundary phase contained impurities that came from the starting powders and the ball milling process.  相似文献   

5.
The effects of adding small quantities of SnO2 to the basic ZnO–Bi2O3 varistor composition were studied in terms of phase reactions, microstructural development, and the formation of inversion boundaries. Scanning and transmission electron microscopy studies showed that the inversion boundaries, triggered by the addition of SnO2, cause anisotropic grain growth in the early stages of sintering. ZnO grains that include inversion boundaries grow exaggeratedly, at the expense of normal grains, until they dominate the microstructure. Higher additions of SnO2 lead to an increase in number of grains with inversion boundaries and to a more fine-grained microstructure. The increasing amount of secondary phases is also related to a higher level of SnO2 addition; however, the influence of these phases on ZnO grain growth is subordinate to the role of inversion boundaries.  相似文献   

6.
万帅  吕文中  付振晓 《硅酸盐学报》2012,40(4):523-524,525,526,527,528
用环境扫描电子显微镜(ESEM)、X射线衍射(XRD)和X射线能谱(EDXS)等研究了水基流延片式ZnO压敏电阻器的低温共烧工艺及其对微观结构和电学性能的影响规律。ESEM分析结果表明:当等静压压力为60 MPa时,Ag电极与流延膜生坯界面结合紧密,Ag电极分布连续,900℃共烧时,未出现开裂、分层,两者收缩率接近。EDXS和XRD分析结果表明:900℃共烧时,Ag在片式压敏电阻器中以单质形式存在,流延膜与Ag电极化学兼容性良好,且在共烧界面处未发现有明显的Ag离子扩散。该流延膜可以与Ag电极在900℃时实现低温共烧,用此制备的片式ZnO压敏电阻器具有良好的压敏性能:压敏电压V1mA=6.1 V,非线性系数α=28.1,漏电流IL=0.15μA。  相似文献   

7.
The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the lower (25 nm) region, the Bi content decays exponentially from an initial maximum value, while the upper region comprises an almost constant Bi content until the end of the layer. Secondly, despite the relatively low Bi content, CuPtB-type ordering was observed both in electron diffraction patterns and in fast Fourier transform reconstructions from high-resolution transmission electron microscopy images. The estimation of the long-range ordering parameter and the development of ordering maps by using geometrical phase algorithms indicate a direct connection between the solubility of Bi and the amount of ordering. The occurrence of both phase separation and atomic ordering has a significant effect on the optical properties of these layers.

PACS

78.55.Cr III-V semiconductors; 68.55.Nq composition and phase identification; 68.55.Ln defects and impurities: doping, implantation, distribution, concentration, etc; 64.75.St phase separation and segregation in  相似文献   

8.
The synthesis of two‐soft‐segment urethane/urea polymeric membranes with various proportions of the two soft segments, poly(propylene oxide) and polybutadiene, yielded very distinct morphologies depending on the degree of phase segregation. The morphologies were identified with transmission electron microscopy. With a low concentration of polybutadiene, this soft segment segregated into ellipsoidal microdomains dispersed in a poly(propylene oxide) matrix. With an intermediate concentration of polybutadiene, the morphology was characterized by nanoscale phase separation and could be described as a disordered, wormlike domain structure. With a high concentration of polybutadiene, a single phase was observed. This was attributed to molecular mixing of the two soft segments and was associated with membranes that under the application of a shear stress developed bands that efficiently scattered light. These bands were identified by field emission scanning electron microscopy with a periodicity of approximately 4–5 μm. The change in the membrane morphology from microscale phase segregation to nanoscale phase segregation led to very different membrane gas‐permeation properties, that is, a reduction of the CO2 permeability from 191 to 90 Barrer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 315–320, 2007  相似文献   

9.
Bi2O3 was added into nickel copper zinc niobium ferrite and treated with different thermal processes to change the grain‐boundary chemical composition. The relationship between the grain‐boundary composition and varistor properties were investigated using scanning electron microscopy, transmission electron microscopy, energy dispersion spectroscopy, and X‐ray photoelectric spectroscopy. The experimental results show that Bi2O3 reacts and diffuses into the spinel ferrite grain, forming bismuth iron compounds, causing the spinel ferrite chemical composition near grain boundary becomes iron deficient. The Fe deficiency spinel ferrite near the grain boundary then changes into p‐type conduction. The annealing process after sintering improves the bismuth oxide diffusion and chemical reaction near the grain boundary, which can increase the grain‐boundary resistivity. The n‐type semiconductive grain interior and p‐type spinel ferrite near the grain‐boundary combination can form a double Schottky barrier, leading the specimen to exhibit varistor properties. A multifunctional varistor‐magnetic material with a nonlinear coefficient of 10 and initial permeability of about 225 at 10 MHz can be successfully fabricated by sinteringNi0.2881Cu0.1825Zn0.4802Nb0.0096Fe2.0168O4 ferrites added with 5 mol% Bi2O3 sintered at 950°C, then annealed at 650°C for 1 h.  相似文献   

10.
In a hot-pressed and deformed MgO single crystal, precipitates of Mg1-xCaxAl2O4 spinel upon which MgAl2O4 spinel subsequently precipitated were observed and analyzed using transmission electron microscopy and scanning electron microscopy. This behavior is related to the respective solubility limits of CaO and Al2O3 in MgO at the hot-pressing temperature and may be aided by impurity segregation to the dislocations. The spinel selectively precipitated at the nodes of a dislocation network which was formed during [001] hot-pressing deformation, as a result of the reaction b3= b1+ b2= (1/2) [011] + (1/2)     = [001]. The dislocation is sessile, and the precipitates have a <100>matrix≨ <100>spinel coherent relationship.  相似文献   

11.
The structures of W- and W-Mo-containing high-entropy borides (HEBs) are systematically studied by combining atomic-resolution transmission electron microscopy imaging, electron diffraction, and chemical analysis. We reveal that W or W-Mo addition in HEBs leads to segregation of these elements to the grain boundaries (GBs). In the meantime, W- or W-Mo-rich precipitates also form along the GBs. Crystallographic analysis and atomic-scale imaging show that the GB precipitates in both W- and W-Mo-containing HEBs have a cube-on-cube orientation relationship with the matrix. With further strain analysis, the coherency of the precipitate/matrix interface is validated. Nanoindentation tests show that the simultaneous GB segregation and coherent precipitation, as a supplement to the grain hardening, provide additional hardening of the HEBs. Our work provides an in-depth understanding of the GB segregation and precipitation behaviors of HEBs. It suggests that GB engineering could be potentially used for optimizing the performance of high-entropy ceramics.  相似文献   

12.
The atomic structures of two symmetric [001] tilt grain boundaries in yttria-stabilized cubic-zirconia, Σ5 (310) and near-Σ13 (510), are studied by Z -contrast scanning transmission electron microscopy. Both boundaries are composed of periodic arrays of highly symmetric structural units, with a distinct unit for each boundary. Oxygen K -edge electron energy-loss spectra show that the oxygen coordination is similar between the bulk and grain boundary, indicating that oxygen ions within the grain boundary reside in distorted tetrahedral sites. Atomic models of the grain boundaries are proposed that are consistent with the experimental data. The core structures are different from previously studied metal or oxide grain boundaries and are unique to the fluorite structure. Yttrium segregation to the grain boundaries is also investigated by electron energy-loss spectroscopy. Yttrium is found to segregate preferentially to the Σ5 grain boundary, and the spatial distribution of the segregation layer is confined to within 1 nm of the boundary plane.  相似文献   

13.
Microstructure of a commercial 3 mol% yttria-doped zirconia nano-particulate powder was observed by transmission electron microscopy, and the distribution of yttrium cation was investigated by energy-dispersive X-ray spectroscopy (EDS) with a probe size less than 1 nm. The cross-sectional high-resolution transmission electron microscopy observations revealed that there are two kinds of particles, consisting of single-phase tetragonal and two phases comprising tetragonal and monoclinic. EDS analysis revealed that yttrium cations segregate to the surface of the tetragonal particle. The origin of tetragonal to monoclinic transformation was considered to be due to external stress during the powder milling process.  相似文献   

14.
Direct observations using scanning transmission electron microscopy (STEM) of the grain-boundary chemistry of selectively doped SrTiO3 and BaTiO3 show the predominant solute segregation in both systems to be that of acceptors (negative effective charge). Appreciable donor segregation is not observed even at lattice concentrations as high as 10 mol%. Donor and acceptor codoped materials show segregation of the acceptor only. The results are consistent with a grain-boundary space-charge distribution consisting of a positive boundary and negative space charge. All grain boundaries examined also show an excess of Ti relative to the A-site cations, suggesting that the positive boundary charge is at least partially accommodated by an excess of Ti ions. The sign and magnitude of the electrostatic potential appear to be remarkably insensitive to changes in lattice defect structure with solute doping. Grain-boundary chemistry appears dominated by space-charge segregation, in contrast with the predictions of recent atomistic simulations which neglect the space-charge potential.  相似文献   

15.
The conductivity of ZnO–varistor ceramics has been analyzed with conductive atomic force microscopy (C-AFM) under atmospheric conditions by measuring the current at different voltages and positions in zinc oxide-based multilayer varistors (MLVs). It is possible to detect individual ZnO grains on the polished sample surface in the AFM topography mode as well as in the two-dimensional current images. Additionally local current–voltage (IV) curves revealed details of the electrical behaviour of the material. To correlate the laterally resolved current image with grain orientations, electron backscattering diffraction (EBSD) has been performed. Beside the well-known varistor behaviour specific influence of the local microstructure has been found.  相似文献   

16.
Electrical properties of CeO2 thin films of different Y2O3 dopant concentration as prepared earlier were studied using impedance spectroscopy. The ionic conductivities of the films were found to be dominated by grain boundaries of high conductivity as compared with that of the bulk ceramic of the same dopant concentration sintered at 1500°C. The film grain-boundary conductivities were investigated with regard to grain size, grain-boundary impurity segregation, space charge at grain boundaries, and grain-boundary microstructures. Because of the large grain boundary and surface area in thin films, the impurity concentration is insufficient to form a continuous highly resistive Si-rich glassy phase at grain boundaries, such that the resistivity associated with space-charge layers becomes important. The grain-boundary resistance may originate from oxygen-vacancy-trapping near grain boundaries from space-charge layers. High-resolution transmission electron microscopy coupled with a trans-boundary profile of electron energy loss spectroscopy gives strong credence to the space-charged layers. Since the conductivities of the films were observed to be independent of crystallographic texture, the interface misorientation contribution to the grain-boundary resistance is considered to be negligible with respect to those of the impurity layer and space-charge layers.  相似文献   

17.
Monodisperse porous SrTiO3 spheres with an average size of ca. 200 nm were synthesized via a hydrothermal route in the presence of poly vinyl alcohol (PVA). Characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, SAED, and high-resolution transmission electron microscopy were used to investigate the products. The results showed that these porous spheres were compared of small primary nanocrystals and pores were formed among them. The nanocrystal and pore diameters increased as the reaction time proceeded. It was suggested that the PVA played an important role in the mesoporous sphere's formation by means of preventing nanocrystal growth through a capping effect.  相似文献   

18.
The phase and microstructure relationship of 12 mol% CeO2-stabilized ZrO2 ceramics prepared from coated powder was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersed X-ray spectroscopy (EDS). As compared with the sample prepared with co-precipitated method, which exhibited a similar grain size distribution, the EDS analysis revealed that the powder coating induced a wide distribution of CeO2 solubility, which decreases monotonically with the increase of grain size. This variation of stabilizer content from grain to grain rendered many large grains in the monoclinic phase. Stronger cerium segregation to grain boundaries was observed between large grains, which often form thin amorphous films there. The inhomogeneous CeO2 distribution keeps more tetragonal ZrO2 grains close to the phase boundary to facilitate the transforming toughness. Addition of an Al2O3 precursor in coated powders effectively raises the overall CeO2 stabilizer content in the grains and preserves more transformable tetragonal phase in the microstructure, which further enhanced the fracture toughness. The dependence of CeO2 solubility on grain size may be explained in a simple coating-controlled diffusion and growth process that deserves further investigation.  相似文献   

19.
The intergranular phase obtained by sintering a binary mixture of ZnO + 0.5 mol% Bi2O3 was isolated by using a dilute solution of HCIO4, which etches ZnO preferentially. The combined results of selected-area electron diffraction and microscopy, microprobe analysis, and X-ray diffraction strongly indicate that the intergranular material is a polycrystalline phase of tetragonal β-Bi2O3 ( P 421 c ), rather than the amorphous ZnO-Bi2O3 phase reported earlier. It appears that the nonohmic behavior in this prototype metal-oxide varistor must be an interfacial property associated with the semiconducting ZnO grains separated by thin layers of high-resistivity Bi2O3.  相似文献   

20.
The combination of results from carbon monoxide chemisorption, X-ray diffraction, and transmission electron microscopy allowed calculating the surface composition of the palladium–copper nanoparticles in Pd–Cu/SiO2 cogelled xerogel catalysts. Values obtained indicate a very pronounced surface enrichment with copper. Surface compositions obtained with this method, which combines three different experimental techniques, are in agreement with the literature data previously obtained for surface segregation in Pd–Cu/SiO2 catalysts by other techniques as low energy ion scattering and X-ray photoelectron spectroscopy. While 1,2-dichloroethane hydrodechlorination over pure palladium mainly produces ethane, increasing copper content in bimetallic catalysts results in an increase in ethylene selectivity, to reach 100% in ethylene selectivity for the sample containing 1.4 wt.% of palladium and 3.0 wt.% of copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号