首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burner-rig thermal cyclic testing of Thermal Barrier Coating (TBC) samples fabricated using different 8YSZ powders was conducted to investigate the influence of the chemical and phase compositions of the powder feedstocks. Four different powder feedstocks were selected. The chemical and phase compositions among the 8YSZ powders were systematically varied while the powder particle size and other physical characteristics were kept nominally the same. The coating process was also selected to achieve similar microstructure among the samples. The testing revealed that (1) higher impurity content (esp. silica) is detrimental to the cyclic life of the TBC; (2) coating porosity has a significant influence on the cyclic life of the TBC, the higher the porosity, the higher the cyclic life, for the range of porosity of the tested samples; (3) a low monoclinic content in the feedstock powder has not been shown to have a positive effect on the cyclic life of the TBC.  相似文献   

2.
Lanthanum zirconate is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high temperature phase stability. However, its application is limited by thermal durability caused by low fracture toughness and low coefficient of thermal expansion. We recently developed LZ/8YSZ composite TBC systems using blended LZ and 8YSZ powders, which have demonstrated excellent thermal cycling performance. In this study, the mechanical properties of the composite TBCs were characterised using both nanoindentation and Vicker’s microhardness tests. The nanoindentation results show that both Young’s modulus and nanohardness increase with increasing 8YSZ content, suggesting the mechanical properties can be tailored by changing the volume ratio of 8YSZ. The ratios of Young’s modulus to nanohardness remain constant, ~18, irrespective to the coating’s composition. The microhardness results show the same dependence with 8YSZ content, which is confirmed by the analytic models based on composite theory.  相似文献   

3.
The main goal of this paper was to evaluate and compare the microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). To this end, NiCrAlY bond coat, nanostructured, and conventional YSZ coatings were deposited on Inconel 738LC substrate by atmospheric plasma spraying (APS). The mechanical properties of the coating were evaluated using nanoindentation and bonding strength tests. The microstructure and phase composition of the coating were characterized by field emission scanning electron microscopy (FESEM) and X-ray diffractometry (XRD). The nanostructured YSZ coating contained both nanosized particles retained from the powder and microcolumnar grains formed through the resolidification of the molten part of the powder, whereas the microstructure of the conventional YSZ coating consisted of columnar grain splats only. The phase composition of the as-sprayed nanostructured coating consisted of the non-transformable tetragonal phase, while the conventional coating showed the presence of both the monoclinic and non-transformable tetragonal phases. The results of nanoindentation and bonding strength tests indicated that the mechanical properties of the nanostructured coating were better than those of the conventional coating.  相似文献   

4.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   

5.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

6.
《Ceramics International》2020,46(2):1307-1313
Sintering behavior and phase transformations in yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs) control their applications in gas turbines operated at high working temperatures required for improved fuel efficiency. In this work, to control the sintering behavior and reduce phase transformations in YSZ-based TBCs, lanthanum zirconate (LZ) powder was blended with the YSZ feedstock powder, and YSZ-LZ composite coatings were fabricated using the air plasma spraying method. The influence of mixture weight ratio of YSZ to LZ (75:25, 50:50, and 25:75) on the sintering behavior and phase stability of the composite coatings was investigated through the isothermal exposure test at 1100, 1300, and 1400 °C. The as-coated composites showed the pyrochlore and tetragonal phases, indicating that the phases are LZ and YSZ, respectively. As the exposure temperature was increased, the phase transformation of YSZ from the tetragonal phase to the monoclinic phase was accelerated. The content of monoclinic phase was changed with the increasing LZ content after thermal exposure at 1300 and 1400 °C. In addition, the composites showed different sintering and bridging behaviors at the adjacent splats with the LZ content. The composites prepared with the blended feedstock powders of LZ and YSZ produced an obvious effect on the phase stability and mechanical properties.  相似文献   

7.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

8.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

9.
《Ceramics International》2019,45(15):18255-18264
Thermal Barrier Coatings (TBCs) play a significant role in improving the efficiency of gas turbines by increasing their operating temperatures. The TBCs in advanced turbine engines are prone to silicate particles attack while operating at high temperatures. The silicate particles impinge on the hot TBC surfaces and melt to form calcia-magnesia-aluminosilicate (CMAS) glass deposits leading to coating premature failure. Fine powder of CMAS with the composition matching the desert sand has been synthesized by solution combustion technique. The present study also demonstrates the preparation of flowable yttria-stabilized zirconia (YSZ) and cluster paired YSZ (YSZ-Ln2O3, Ln = Dy and Gd) powders by single-step solution combustion technique. The as-synthesized powders have been plasma sprayed and the interaction of the free standing TBCs with CMAS at high-temperatures (1200 °C, 1270 °C and 1340 °C for 24 h) has been investigated. X-ray diffraction analysis of CMAS attacked TBCs revealed a reduction in phase transformation of tetragonal to monoclinic zirconia for YSZ-Ln2O3 (m-ZrO2: 44%) coatings than YSZ (m-ZrO2: 67%). The field emission scanning electron microscopic images show improved CMAS resistance for YSZ-Ln2O3 coatings than YSZ coatings.  相似文献   

10.
Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are used to protect hot-components in aero-engines from hot gases. In this paper, the microstructure and thermo-physical and mechanical properties of plasma sprayed YSZ coatings under the condition of calcium-magnesium-alumina-silicate (CMAS) deposits were investigated. Si and Ca in the CMAS rapidly penetrated the coating at 1250 °C and accelerated sintering of the coating. At the interface between the CMAS and YSZ coating, the YSZ coating was partially dissolved in the CMAS, inducing the phase transformation from tetragonal phase to monoclinic phase. Also, the porosity of the coating was reduced from ∼25% to 5%. As a result, the thermal diffusivity at 1200 °C increased from 0.3 mm2/s to 0.7 mm2/s, suggesting a significant degradation in the thermal barrier effect. Also, the coating showed a ∼40% increase in the microhardness. The degradation mechanism of TBC induced by CMAS was discussed.  相似文献   

11.
《Ceramics International》2016,42(6):6755-6760
Crystallographic features, physical properties and ionic release from yttria stabilized zirconia (YSZ) in suspension were studied by means of XRD, TEM, light-scattering particle size, BET, ICP and zeta potential analysis. It was found that Zr, Y, Na, and to a lesser extent Ca, Hf and Pd leach from 8 mol% YSZ powder. The impurities present increase the zeta potential of suspensions made from as-received YSZ. A trace amount of tetragonal phase observed in 8 mol% YSZ persists following washing and calcination–milling. Dislocations and crystallographic defects together with fractured crystals which form during milling of the calcined powder should lead to the formation of more broken bonds; as a result the surface of the particles can support higher surface charge density. Washing and calcination–milling lead to a shift of the isoelectric point of 8 mol% YSZ from pH 8.4 to pH 6.3 and 6.8, respectively. Due to higher chemical stability and previously shown positive impacts on microstructure and performance of fuel cells, use of calcined YSZ can be more advantageous than as received powder.  相似文献   

12.
《Ceramics International》2022,48(17):24402-24410
Zr6Ta2O17 has higher fracture toughness, better phase stability, thermal insulation performance and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (8 YSZ, 7–8 wt%) at temperatures above 1200 °C. However, the thermal expansion coefficients between Zr6Ta2O17 coating and bond coating do not match well. A double-ceramic-layer design is applied to alleviate the thermal stress mismatch. The Zr6Ta2O17/8 YSZ double-ceramic-layer thermal barrier coatings (TBCs) are prepared by atmospheric plasma spraying (APS). During the thermal shock test, Zr6Ta2O17/8 YSZ double-ceramic-layer TBCs exhibit a better thermal shock resistance than 8 YSZ and Zr6Ta2O17 single-layer TBCs. The thermal shock performance and failure mechanism of TBCs in the thermal shock test are investigated and discussed in detail.  相似文献   

13.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

14.
Yttria partially stabilized zirconia (~4.0?mol% Y2O3–ZrO2, 4YSZ) has been widely employed as thermal barrier coatings (TBCs) to protect the high–temperature components of gas–turbine engines. The phase stability problem existing in the conventional 4YSZ has limited it to application below 1200?°C. Here we report an excellent zirconia system co–doped with 16?mol% CeO2 and 4?mol% Gd2O3 (16Ce–4Gd) presenting nontransformable feature up to 1500?°C, in which no detrimental monoclinic (m) ZrO2 phase formed on partitioning. It also exhibits a high fracture toughness of ~46?J m?2 and shows high sintering resistance. Besides, the thermal conductivity and thermal expansion coefficient of 16Ce–4Gd are more competent for TBCs applications as compared to the 4YSZ. The combination of properties suggests that the 16Ce–4Gd system could be of potential use as a thermal barrier coating at 1500?°C.  相似文献   

15.
《Ceramics International》2016,42(13):14374-14383
Nanostructured scandia, yttria doped zirconia (5.5SYSZ), 7 wt% yttria stabilized zirconia (7YSZ) and 15YSZ thermal barrier coatings (TBCs) were produced by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal stability and sintering behavior of the three as-sprayed TBCs at 1480 °C were investigated. The results indicated that the thermal stability of SYSZ and TBCs was longer than the 7YSZ TBCs due to higher amount of tetragonal phase. Furthermore, the results demonstrated that the nanostructured 7YSZ coating exhibits higher sintering resistance than 5.5SYSZ TBC.  相似文献   

16.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

17.
Efficiency of a gas turbine can be increased by increasing the operating temperature. Yttria‐stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used in gas turbine applications. However, above 1200°C, YSZ undergoes significant sintering and CMAS (calcium magnesium alumino silicate) infiltration. New ceramic materials of rare earth zirconate composition such as gadolinium zirconate (GZ) are promising candidates for thermal barrier coating applications (TBC) above 1200°C. Suspension plasma spray of single‐layer YSZ, double‐layer GZ/YSZ, and a triple‐layer TBC comprising denser GZ on top of GZ/YSZ TBC was attempted. The overall coating thickness in all three TBCs was kept the same. Isothermal oxidation performance of the three TBCs along with bare substrate and bond‐coated substrate was investigated for time intervals of 10 h, 50 h, and 100 h at 1150°C in air environment. Weight gain/loss analysis was carried out by sensitive weighing balance. Microstructural analysis was carried out using scanning electron microscopy (SEM). As‐sprayed single‐layer YSZ and double‐layer GZ/YSZ showed columnar microstructure, whereas the denser layer in the triple‐layer TBC was not columnar. Phase analysis of the top surface of as‐sprayed TBCs was carried out using XRD. Porosity measurements were made by water intrusion method. In the weight gain analysis and SEM analysis, multilayered TBCs showed lower weight gain and lower TGO thickness compared to single‐layer YSZ.  相似文献   

18.
《Ceramics International》2017,43(5):4102-4111
The nanostructured single-ceramic-layer (SCL) 8YSZ thermal barrier coatings (TBCs), double-ceramic-layer (DCL) Sm2Zr2O7 (SZ)/8YSZ and SZ doped with 8 wt% CeO2 nanoscale particles (8CSZ)/8YSZ TBCs were fabricated by atmospheric plasma spraying (APS) on nickel-based superalloy substrates with NiCoCrAlY as the bond coating. The thermal cycling behavior of the three as-sprayed TBCs was investigated systematically at 1000 ℃ and 1200 ℃. The results reveal that the thermal cycling lifetime of the nanostructured DCL 8CSZ/8YSZ TBCs is the longest among them, which is largely due to the fact that the intermediate layer buffer effect of the DCL structure, more porosity and improvement of thermal expansion coefficient from doping CeO2 nanoparticles can relieve thermal stress to a great extent at elevated temperature. The failure mechanism of the nanostructured TBCs has been discussed in detail.  相似文献   

19.
《Ceramics International》2022,48(5):6681-6690
Understanding the microstructural transformation of plasma sprayed (APS) yttria-stabilized zirconia (YSZ) after experiencing the thermal shocking cycles is practically important for the coating optimization in terms of structure and performance. In this study, thermal shocking tests were conducted on the YSZ coated piston crown. The microscopic morphology and structure alteration across the YSZ coating interface over the piston crown was characterized by the ex-situ techniques. The results revealed that the YSZ coating primarily consisted of a stable tetragonal phase, without the monoclinic phase even after 800 cycles of thermal shocking. As the thermal shocking test continued, the pore number within the YSZ coating gradually decreased due to their spontaneous closure and the grain size correspondingly increased. Some visible cracks parallel to the interface consisting of YSZ and bonding layer happened at the localized regions of the YSZ coating. The stress state of YSZ coating was from originally tensile to compressive after thermal exposure, which helped prolonging the service lifetime of YSZ coating. In particular, the thermal shock resistance of plasma sprayed YSZ coated piston crown in association with the varying microstructure was also discussed.  相似文献   

20.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号