共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(2):2007-2014
The perovskite CaMnxZr(1-x)O3 (x = 0, 0.05, 0.10, 0.15) (CMZO) NTC (Negative Thermal Coefficient) thermo-sensitive ceramic were prepared by the solid phase method that can be used as high temperature thermistor materials in the range of 200–1200 °C.The XRD pattern showed that CMZO is a finite solid solution and that a second phase, CaMnO3, will be formed after exceeding the solid solution limit (i.e., at x = 0.1). The thermal constant B value was found to decrease from 19521 K to 9217–9535 K, with a corresponding decrease in activation energy, Ea, from 1.69 eV to 0.82 eV. The Nyquist plot indicates that the grain boundary resistance determines the overall complex impedance. Moreover, the aging drift rate (ΔR/R0) was found to be lower than 4.3%, which is an indication of an excellent high temperature stability of the CMZO ceramic material. 相似文献
2.
简要论述了Al2O3-SiC复相陶瓷材料的常用制备方法,如无压烧结法、热压烧结法、气压烧结法和溶胶-凝胶法等,重点介绍了碳热还原法。对以不同原料制备Al2O3-SiC复相陶瓷材料的碳热还原法进行了比较,指出了这方面研究的不足之处和下一步研究的方向。 相似文献
3.
《Journal of the European Ceramic Society》2014,34(6):1537-1545
AgNb0.5Ta0.5O3 ceramics were synthesized and analyzed, with respect to their dielectric properties, in the radio- and microwave-frequency ranges. The influences of different synthesis conditions were investigated and correlated with the difficulties in preparing single-phase ceramics, as a consequence of the inhomogeneous distribution of Nb and Ta ions and the decomposition of the matrix phase. The results revealed that with the simple mixing of all three oxides and subsequent firing in air, it is possible to prepare composite material that is attractive for microwave applications due to inhomogeneity of the B-site cation distribution – a well-known issue that was in our case shown to be an advantage for decreasing the temperature dependence of the resonant frequency over a broad temperature range. On the other hand, we also succeeded in fabricating single-phase ceramics with a very high density through the initial formation of a precursor and sintering in an overpressure of oxygen. 相似文献
4.
《Journal of the European Ceramic Society》2023,43(5):2115-2124
A novel composite ceramic, composed of equal-volumetric Zr-stabilized Gd2O3 and MgO phases, was prepared to be transparent in mid-wave infrared range. Zr stabilized Gd2O3 is proved to have a lower lattice parameter (10.7516 Å) using XRD refinement. Pressureless sintering behavior of Gd2O3-MgO with/without 2 at% Zr-doping (naming ZGM and GM) was studied via the real-time observation technique. The shrinkage of ZGM green body proceeds steadily up to 1400 °C while that of the undoped one shrinks sharply at 1250 °C due to Gd2O3 phase transition. The segregation of Zr element along the grain boundaries of Zr-Gd2O3 creates a synergized effect on the grain refinement with pinning effect. Dense ZGM ceramics exhibit superior transmittance of 78.3 %‐85.6 % at 3–5 µm, which show good consistency with the calculated values. The refractive index of Zr- Gd2O3 varies from 1.87 at 3 µm to 1.80 at 5 µm, which is smaller than those of monoclinic Gd2O3. 相似文献
5.
烧结气氛对合成MgAl2O4-Ti(C,N)复合陶瓷的影响 总被引:3,自引:3,他引:3
以金属铝粉、钛白粉和轻烧MgO细粉为原料,通过设计100%焦炭粒(简称C气氛),10%钛白粉 90%焦炭粒(简称TC气氛),以及10%硅微粉 90%焦炭粒(简称SC气氛)3种埋粉条件下的高温烧结还原性气氛,采用X射线衍射仪(XRD)、扫描电镜(SEM)和微区电子探针分析(EPMA)等手段,研究了铝热还原氮化法(1600℃3h)制备MgAl2O4-Ti(C,N)复合陶瓷在不同烧结气氛下的相组成和显微结构的变化。结果表明在不同气氛下,烧后试样的主要物相均为MgAl2O4和Ti(C,N),Ti(C,N)可能会固溶氧,气氛对Ti(C,N)的影响较大。和单纯埋炭气氛下相比,在TC气氛下有助于Ti(C,N)的生成,但晶粒细小;在SC气氛下不利于Ti(C,N)的生成,且有玻璃相存在。 相似文献
6.
《Journal of the European Ceramic Society》2017,37(5):2115-2122
Sintering densification processes of the composite ceramics (Bi3.15Nd0.85Ti3O12 (BNdT)/CoFe2O4 (CFO)) have been investigated using dilatometric experiments combining with the TG-DTA, density measurements and microstructure studies. Microstructures analyses and quantitative calculations show that the composite ceramics achieve densification at low temperatures (<1150 °C). The formation of coherent-lattice interfaces between (200)/(020)BNdT and (310)CFO are considered to play an important role on such densification. The intrinsic preferred orientation of BNdT grains is suppressed by CFO phase because of this coherent relationship. Although the sintering activation energies of 0.8BNdT-0.2CFO are about 2.7 times larger than those of pure BNdT due to the pinning effect, the composite ceramic could still be densified, indicating the formation energy of coherent-lattices provided the extra sintering force. The even coercive electric fields of the resulting pure BNdT and 0.8BNdT-0.2CFO ceramic are approximately 89 and 97 kV/cm, respectively, at 250 kV/cm. The polarization of 0.8BNdT-0.2CFO reaches saturation around 430 kV/cm. 相似文献
7.
Xingzhi Bai Zhiteng Chen Peng Zheng Wangfeng Bai Jingji Zhang Lili Li Fei Wen Liang Zheng Yang Zhang 《Ceramics International》2021,47(16):23116-23123
A series of novel lead-free energy storage ceramics, (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 (BF-BT-xBBN), were fabricated by traditional solid-state reaction, where bismuth layer-structured BaBiNb2O9 was incorporated into perovskite-structured BiFeO3–BaTiO3 ceramic as an additive. The addition of BaBi2Nb2O9 increased the relaxor behavior and breakdown strength of BF-BT ceramics due to the formation of polar nanoregionals (PNRs), inducing enhanced energy storage performance. The composite ceramics, with x = 0.08, showed a large recoverable energy density (Wrec) of 3.08 J/cm3 and an outstanding energy storage efficiency (η) of 85.57% under an applied electric field of 230 kV/cm. Moreover, the composite ceramics exhibited excellent thermal stability and high stability toward different frequencies in a temperature range of 20–100 °C and a frequency range of 0.1–1500 Hz. These results demonstrate great potential of novel BF-BT-xBBN composite ceramics for next-generation energy storage applications. 相似文献
8.
In this study, porous calcium silicate (CaSiO3) scaffolds were prepared by 3D gel-printing (3DGP) method and Fe3O4 water-based magnetic fluids (WMFs) were prepared by phacoemulsification compound chemical coprecipitation method. Fe3O4 WMFs were coated on CaSiO3 scaffolds surface to prepare Fe3O4/CaSiO3 composite scaffolds. The effect of WMFs with different Fe3O4 concentrations on porous CaSiO3 scaffolds was studied. The composition and morphological characteristics of porous scaffolds were analyzed by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The magnetic properties were tested by vibrating sample magnetometer (VSM). The stability of Fe3O4 WMFs coatings and the degradability of composite scaffolds were tested by immersing them in simulated body fluid (SBF). The results show that when Fe3O4 concentration was 5.4% (w/v), the composite scaffolds had the highest saturation magnetization of 69.6 emu/g and the best stability in dynamic SBF. It is obviously that Fe3O4 WMFs coatings can be used for bone tissue engineering scaffolds repairing. 相似文献
9.
Huijie Cheng Yali Li Edwin Kroke Stefanei Herkenhoff 《Journal of the European Ceramic Society》2013,33(11):2181-2189
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite. 相似文献
10.
《Journal of the European Ceramic Society》2023,43(5):1972-1977
In this study, the Ba3P2O8 and Mg2B2O5 were fabricated by the solid-state reaction method separately, and the (1-x)Ba3P2O8-xMg2B2O5 (x = 0.2–0.4) low-temperature co-fired ceramic (LTCC) materials were obtained in the sintering temperature range of 880–960 °C. The phase compositions, microstructures, elemental compositions, and microwave dielectric properties of the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and TE01δ mode dielectric resonator method, respectively. The results revealed that the Mg2B2O5 phase and Ba3P2O8 phase could coexist well in the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics without formation of any new phases. The abnormal grain growth of Ba3P2O8 grains was inhibited by the addition of Mg2B2O5. In addition, through composition of Ba3P2O8 and Mg2B2O5, the temperature coefficient of resonant frequency (τf) and quality factor (Q×f) were effectively optimized, and the sintering temperature was reduced to 880–960 °C. The optimal performance of 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic was achieved at a sintering temperature of 920 °C, τf = ?1.9 ppm/°C, Q×f = 61,250 GHz, and a low permittivity εr = 10.7. The chemical compatibility test demonstrated that the composite ceramic could coexist well with silver, which indicated that the 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic is a candidate LTCC material with wide application prospects. 相似文献
11.
Anmeng Deng Laihui Luo Weiping Li Feifei Wang Yaojin Wang 《Journal of the European Ceramic Society》2018,38(4):1407-1415
Developing Na0.5Bi0.5TiO3-based magnetoelectric (ME) coupling composites with higher depolarization temperature is highly valuable for the environment-friendly smart electronic devices. We have developed a new kind of 0-3 type 0.94Na0.5Bi0.5TiO3-0.06BaTiO3:xCoFe2O4 (NBTBT:xCFO, x = 0, 0.1, 0.2, 0.3) composite ceramics with a deferred depolarization temperature, together with an additional strong ME coupling of 9.2 mV/cm·Oe for the NBTBT:0.2CFO. The basic structure, ferroelectric/ferromagnetic properties, and the depolarization temperature of the NBTBT:xCFO composite ceramics were investigated. It was found that an enhancement of depolarization temperature (>25 °C) was obtained in these 0-3 type composites relative to the pure NBTBT ones (115 °C vs 90 °C). The mechanism of the enhanced depolarization temperature of the composites is discussed. The present results demonstrate that NBTBT:xCFO composites have great potential for ME devices. 相似文献
12.
以合成中温固体氧化物燃料电池阴极La0.7Sr0.3Fe0.8Co0.2O3(LSFC)粉体为研究对象,探讨了PVA改进的溶胶凝胶法合成粉体的影响因素,获得最优实验条件。当pH值=7,柠檬酸与金属离子摩尔比为1.6∶1;PVA与硝酸盐质量比为1∶4时,能够形成形态良好且透明澄清的溶胶,再经12 h的陈化形成凝胶,然后在155℃烘箱中使凝胶膨化制得LSFC前驱体。LSFC前躯体在900℃煅烧2 h后形成晶体结构稳定、粒径分布均匀、具有单一钙钛矿结构的粉体。 相似文献
13.
《Journal of the European Ceramic Society》2023,43(4):1689-1697
Due to the low density, low thermal conductivity and low water absorption, porous glass-ceramics have demonstrated excellent performance for thermal insulation. Closed pore structure can greatly reduce the thermal conductivity and convection as well as achieve high mechanical strength. However, yet it is difficult to realize closed pore structure due to the critical preparation condition. Here we use Fe2O3, which is the by-product of copper tailings, to optimize the pores structures of the porous glass-ceramics and facilitate the formation of uniform closed pore structure. The porous glass-ceramics were prepared by melting-quenching method, followed by sufficiently foaming through powder sintering route with SiC powders as foaming agent. The foaming process, micro structure, pore structure and thermal insulation performance were directly observed by heating microscope, scanning electron microscope (SEM), X-ray computed tomography and infrared thermal imager. The results show that the addition of Fe2O3 modified the depolymerization degree of the glass network and increased the numbers of non-bridged oxygen, decreasing the foaming temperature. The resultant closed pore structure showed a better thermal insulating performance than open pore structure. Accordingly, we achieved a low thermal conductivity of 0.19 W·m?1·K?1 with the highest specific strength of 19.55 MPa·g?1·cm?3 based on closed pore structure. 相似文献
14.
Hongjun Zhang Hua Ke Huijiadai Luo Pengkang Guo Bin Yang Dechang Jia Yu Zhou 《Journal of the European Ceramic Society》2018,38(5):2353-2359
The 0.8Bi3.15Nd0.85Ti3O12 (BNdT)-0.2CoFe2O4 (CFO) composite multiferroic ceramics have been fabricated by spark plasma sintering (SPS) at 850?°C. The relative density of as-sintered SPS ceramic reaches 97.4 (±0.3)%. The composites are composed of pure BNdT and CFO phases without any preferred c-orientation. The a-orientation preference is more obvious perpendicular to the pressure direction. The average grain-sizes of BNdT and CFO are 163 and 146?nm, respectively. The BNdT phase has more grains below 100?nm (~20%). The super energy-dispersive X-ray analyses suggest no serious reaction between BNdT and CFO. The Raman spectrum verifies the nano-structure of the SPS ceramic via the broadening bands and peak shifts. The Curie temperature of the SPS ceramic declines to 560?°C with stabilized dielectric loss. The grain boundary resistance plays a dominant role on impedance above 700?°C. The remanent polarization approaches to 15.2?μC/cm2 (300?kV/cm) with lower coercive fields (?89/+95?kV/cm). 相似文献
15.
The influences of atmosphere during processes of melting and heat treatment, heat treatment temperature, Fe3O4 content and basicity on the magnetic properties of magnetite-based glass ceramics were investigated. For sample containing 20 % Fe3O4 melted in different atmospheres, the highest saturation magnetisation was realized in 20vol% air + 80 vol% Ar, due to the fact that ratio of Fe3+ to Fe2+ in melt obtained in this atmosphere was close to 2. However, it was found that the coercivity of glass ceramics was not affected by the melting atmosphere. A high sintering temperature led to the decrease of saturation magnetisation and the increase of coercivity. As increasing Fe3O4 content, the main crystal phase transformed from CaSiO3 to CaFe0.6Al1.3Si1.08O6 and finally to magnetite phase, accompanied by the increase of saturation magnetisation and coercivity. In addition, the increase of basicity caused the decrease of saturation magnetisation and the increase of coercivity. 相似文献
16.
为提高Al2O3陶瓷的高温力学性能,采用热压烧结工艺(烧结温度1 800℃,烧结压力20 MPa,保温1 h)制备了Al2O3-ZrB2-SiC复相陶瓷(简称AZS),并研究了ZrB2含量对Al2O3基陶瓷高温抗折强度和抗热震性的影响。结果表明:1)在Al2O3基陶瓷中加入第二相ZrB2能有效改善材料的高温抗折强度和高温强度保持率,在1 000和1 200℃时,加入20%体积分数ZrB2的AZS陶瓷试样具有最高的高温抗折强度,而加入24%体积分数ZrB2的AZS陶瓷试样具有最高的高温强度保持率。2)AZS陶瓷的抗热震性能优于纯Al2O3陶瓷。经100℃温差急冷后,加入20%体积分数ZrB2的AZS陶瓷具有最高的残余强度,比纯Al2O3陶瓷提高了17.2%;经300和500℃温差急冷后,加入24%体积分数ZrB2的AZS陶瓷都具有最高的残余强度,比Al2O3陶瓷分别提高了35.3%和20.9%。 相似文献
17.
《Ceramics International》2016,42(16):18108-18115
Perovskite ceramics with a formula of Ca0.7Ti0.7La0.3Al0.3O3 (CTLA) were produced through a conventional solid-state reaction procedure following three different La3+-doping methods using powders of La2O3, or La2O3/Al2O3 powder mixture, or LaAlO3. La3+ doping favored grain growth and densification, affected the grain size distribution, and improved the dielectric properties of the produced sintered CTLA ceramics. The doping methods had a strong influence on these properties. More specifically, doping with La2O3 and La2O3/Al2O3 resulted in formation of solid solution, while a secondary phase formed in the CTLA ceramics doped with LaAlO3, which caused a coarsening of the microstructure and lowered the La3+ doping effects on the dielectric properties. The experimental results suggest that La3+ doping improves the dielectric properties of the sintered CTLA perovskite ceramics, which are further enhanced by doping with Al3+ ions in small amounts. However, further increase of Al3+ ions content jeopardizes them. 相似文献
18.
Glass additive BaO-SrO-TiO2-Al2O3-SiO2-BaF2 is employed to enhance the microstructures and energy storage properties of the Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics. To clarify the energy storage mechanism, the charge transportation and polarization process are investigated by thermally simulated depolarization current (TSDC). The dielectric breakdown strength increases from 4.3?kV/mm to 10.8?kV/mm for BZT-0.15BCT ceramics with 11?wt% glass additives, indicating that glasses could refine the grain size, uniform the structure, and decrease defects. Due to the micro-domain region, dielectric relaxation behavior is observed with a broadened and reduced dielectric constant peak at a large dielectric constant of about 3000?at room temperature. The largest charge energy density of 1.45?J/cm3 and discharge density of 0.17?J/cm3 are achieved for BZT-0.15BCT glass ceramics with 7?wt% glass additives. TSDC results demonstrate that dipole origin movement and charge transportation have an important effect on the dielectric properties and dielectric breakdown strength, respectively, which are largely influenced by the defects distribution state at the interfaces. Moderate domain walls could restrain the defects to inhibit the charge transportation and are harmful for the dielectric properties inversely. To achieve excellent energy storage performance, moderate domain walls are compromise of slightly degrading dielectric properties and greatly improving dielectric breakdown strength. 相似文献
19.
Bin Tang Qiuyuan Xiang Zixuan Fang Xing Zhang Zhe Xiong Hao Li Changlai Yuan Shuren Zhang 《Ceramics International》2019,45(9):11484-11490
The CaMg1-xCr2x/3Si2O6 (0?≤?x?≤?0.1) microwave dielectric ceramics were synthesized via conventional solid state reaction. In this study, the effects of Cr3+ substituting for Mg2+ on morphology, crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics were explored. XRD diffraction patterns exhibited that the CaMg1-xCr2x/3Si2O6 ceramics possessed the pure phase of CaMgSi2O6 when x?≤?0.06 and a small amount of secondary phase Ca3Cr2(SiO4)3 for 0.08?≤?x?≤?0.1. SEM micrographs revealed that the substitution of Mg2+ with Cr3+ could decrease the grain size. The apparent density was affected by the concentration of Mg vacancies. The correlation between crystal structure and microwave dielectric properties was investigated through the Rietveld refinement and Raman analysis. The microwave dielectric properties were mainly dependent on relative density, ionic polarizabilities, internal strain ?, disordered structure and MgO6 octahedron distortions. Finally, CaMg1-xCr2x/3Si2O6 (x?=?0.02) ceramics sintered at 1270?°C for 3?h exhibited excellent microwave dielectric properties of εr?=?8.06, Q?×?f?=?89054?GHz, τf?=??44.92182?ppm/ºC. 相似文献
20.
Yong Hou Yu Wang Guo-Hua Zhang Kuo-Chih Chou 《Journal of the European Ceramic Society》2021,41(10):5201-5213
Fully dense and magnetically controllable glass ceramics was successfully synthesized by method of hot pressing using CaO-Al2O3-SiO2-Na2O glass powder and Fe3O4 powder as raw materials. The influences of sintering temperature and time, content and particle size of Fe3O4, as well as particle size of glass powder on the densification and magnetic properties of samples were investigated. It was found that the saturation magnetization gradually increased with increasing magnetite content. In addition, the samples containing smaller size magnetite particles had a higher coercivity. However, for samples using smaller size glass powder, magnetite particles could partially dissolve into the glass matrix, which led to the decrease of saturation magnetization and the increase of coercivity. It was also concluded that the precipitation of crystalline phase from smaller size glass powder caused the decrease of degree of densification, and after decreasing the sintering temperature, the degree of densification of product was enhanced. 相似文献