首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this research a dynamic grey box model (GBM) of ethylene oxide (EO) fixed bed reactor has been presented. In the first step of the study, kinetic model of the existing reactions was obtained using artificial neural network (ANN) approach. In order to build the ANN model industrial data of a typical EO reactor were employed. Time, C2H4, C2H4O, CO2, H2O and O2 mole fractions were network inputs and the multiplication of reaction rate and catalyst deactivation (r * a)was ANN output. From 164 data, 109 data were employed to train ANN. After employing different training algorithms, it was found that, the radial basis function network (RBFN) training algorithm provides the best estimations of the data. This best obtained network was tested against fifty five unseen data. The network estimations were close to unseen data which confirmed generalization capability of the obtained network.In the next step of study, (r * a) was estimated with ANN and then the hybrid model of the reactor was solved. Simulation results were compared with EO mechanistic model and also with plant industrial data. It was found that GBM is 8.437 times more accurate than the mechanistic model.  相似文献   

2.
Binary mixtures of poly(ethylene oxide) and resorcinol exhibit two eutectic phase transitions at 40 and 80 °C, which are separated by a single-phase stoichiometric complex at ≈33 mol% resorcinol. These eutectic temperatures increase slightly at higher molecular weights of poly(ethylene oxide). The eutectics and the molecular complex are absent in ternary mixtures with either 25 or 40 wt% poly(2-vinylpyridine) because both polymers contain electron-pair donors which participate in hydrogen bonding interactions with the hydroxyl groups of the small-molecule aromatic. In contrast, 25 wt% polystyrene does not disrupt the bi-eutectic phase behavior of poly(ethylene oxide) and resorcinol because polystyrene is inert in these ternary mixtures. The lightest lanthanides with the largest ionic radii in the first-row of the f-block, like LaCl3(H2O)6 and CeCl3(H2O)x, are more effective than neodymium, terbium and ytterbium trichloride hexahydrates from the viewpoint of (i) competing with resorcinol, (ii) interacting with poly(ethylene oxide), (iii) eliminating eutectic melting, and (iv) disrupting the 2:1 stoichiometric complex between poly(ethylene oxide) and resorcinol. High-resolution 13C solid state NMR spectroscopy identifies resorcinol in several different molecular environments. Multiple resonances are observed for chemically equivalent, but morphologically and crystallographically inequivalent, 13C sites in the solid state. The isotropic chemical shift of the phenolic 13C site in this small-molecule aromatic is very sensitive to the strength of intermolecular interactions in various phases. For example, self-association of resorcinol in pure crystalline phase γ yields a phenolic carbon chemical shift at 155 ppm. The formation of a 2:1 stoichiometric complex between poly(ethylene oxide) and resorcinol in co-crystallized phase β is identified by a phenolic carbon chemical shift at 158 ppm. When resorcinol and poly(2-vinylpyridine) interact in a homogeneous amorphous phase, the phenolic carbon resonance appears at a chemical shift of 160 ppm. A resorcinol-rich disordered crystalline phase in ternary mixtures with poly(ethylene oxide) and poly(2-vinylpyridine) yields a phenolic carbon resonance at 159 ppm. Temperature-composition projections of the binary and ternary phase diagrams, constructed via differential scanning calorimetry, allow one to interpret 13C NMR spectra of these strongly interacting blends and complexes in the solid state.  相似文献   

3.
In this work, the ethylene epoxidation performance in a low-temperature corona discharge system was improved by initially producing oxygen free radicals prior to the reaction with unactivated ethylene molecules, in which the ethylene was separately fed into the system at various feed positions of the plasma zone. In addition, various operating parameters, including O2/C2H4 feed molar ratio, applied voltage, input frequency, total feed flow rate, and gap distance between pin and plate electrodes, were optimized for the separate feed system. The highest ethylene oxide (EO) yield was achieved under the operating conditions of a C2H4 feed position of 0.2 cm, an O2/C2H4 feed molar ratio of 1:2, an applied voltage of 18 kV, an input frequency of 500 Hz, a total feed flow rate of 100 cm3/min, and an electrode gap distance of 10 mm. In comparisons between the separate feed and the mixed feed of C2H4 and O2 under their own optimum conditions, the separate feed provided higher EO selectivity and yield with lower undesired product selectivities and lower power consumption, as compared to the mixed feed. The results confirm that the separate feed with a suitable C2H4 feed position has sufficient reaction time with minimum ethylene molecules to be activated which, in turn, can reduce all undesired reactions including cracking, dehydrogenation, hydrogenation, combustion, and coupling reactions of ethylene, resulting in superior ethylene epoxidation performance.  相似文献   

4.
Self ordered arrays of titanium manganese mixed oxide nanotubes were prepared by anodization of Ti8Mn alloy (UNS R56080) under ultrasonication in diluted ethylene glycol containing fluoride. The dimensions of the nanotubes (diameter: 20-100 nm and length: 0.5-2.0 μm) could be tuned by changing the synthesis parameters. The as-anodized nanotubes showed a stoichiometry of (Ti,Mn)O2. Upon annealing at 500 °C in oxygen atmosphere, the nanotubes contained a mixture of anatase + rutile phases of TiO2 and Mn2O3. The composition of the oxide nanotubes was influenced by the chemistry of the phases present in the alloy. More manganese content was observed in the oxide formed on the β-phase than in the oxide layer of α-phase. Anodization in the ultrasonic field increased the kinetics of nanotubular oxide formation and resulted in homogeneous ordering of the nanotubular arrays as compared to the anodization by conventional stirring in the fluoride containing ethylene glycol solution. Whereas, anodization in aqueous acidified fluoride solutions resulted in severe attack of the β-phase and did not show presence of nanotubular oxide structure.  相似文献   

5.
Mullite is one of the most important aluminosilicate due to its unique thermal properties. In this work, mullite was obtained by sol-gel process at low temperature using sodium metasilicate, water, aluminum nitrate and ethylene glycol. The samples were prepared with a volume ratio of ethylene glycol/water equal to 0/1, 1/1, 2/1 and 3/1. The ethylene glycol effect on mullite crystallization was studied by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Differential Thermal Analysis (DTA). The sample prepared without ethylene glycol, the less homogeneous one, formed amorphous silica, spinel-phase and α-alumina at 1000 °C, and then crystallized mullite at 1200 °C, with an alumina molar fraction of 0.58. The other samples formed amorphous silica at 900 °C and crystallized mullite as the only crystalline phase at 1000 °C. However, the alumina content in mullite formula depends on the thermal treatment, reaching 0.58 at 1250 °C.  相似文献   

6.
Home-made NaA zeolite membranes were used for pervaporation dehydration of ethylene glycol (EG)/water mixtures. Hydrothermal stability of the membranes in pervaporation was investigated for industrial application purpose. The membranes exhibited good stability for water content of less than 20 wt.% at 100 °C. The reduction of operating temperature was effective to improve membrane stability for operating at high feed water content (e.g. 30 wt.%). The influence of feed water content and operating temperature on dehydration of EG was extensively investigated. A permeation flux of 4.03 kg m−2 h−1 with separation factor of >5000 was achieved at 120 °C for the separation of the solution with 20 wt.% water content. A pilot-scale pervaporation facility with membrane area of 3 m2 was built up for dehydration of EG with the water content of 20 wt.%, which showed technical feasibility for industrial application.  相似文献   

7.
Measurements of interfacial tensions for 2-ethyl-hexanol-(propylene oxide)∼4.5-(ethylene oxide)∼8 (2EH-PO4.5-EO8) at the planar water-CO2 interface and the surfactant distribution coefficient are utilized to explain microemulsion and macroemulsion phase behavior from 24 to 60 °C and 6.9 to 27.6 MPa. A CO2 captive bubble technique has been developed to measure the interfacial tension γ at a known surfactant concentration in the aqueous phase, with rapid equilibration at the water-CO2 interface. The surface pressure (γo − γ) decreases modestly with density at constant temperature as CO2 solvates the surfactant tails more effectively, but changes little with temperature at constant density. The area per surfactant at the CO2-water interface determined from the Gibbs adsorption equation decreases from 250 A2/molecule at 24 °C and 6.9 MPa, to 200 A2/molecule at 27.6 MPa. It was approximately twofold larger than that at the water-air interface, given the much smaller γo driving force for surfactant adsorption. For systems with added NaCl, γ decreases with salinity at low CO2 densities as the surfactant partitions from water towards the W-C interface. At high densities, salt drives the surfactant from the W-C interface to CO2 and raises γ. Compared with most hydrocarbon surfactants, this dual tail surfactant is unusually CO2-philic in that it partitions primarily into the CO2 phase versus the water phase at CO2 densities above 0.8 g/ml, and produces γ values below 1 mN/m. With this small γ, a middle phase microemulsion and a C/W microemulsion were formed at low temperatures and high CO2 densities, whereas macroemulsions were formed at other conditions.  相似文献   

8.
Samples of Nb2O5 were prepared by laser floating zone (LFZ) technique and by solid-state reaction in order to study some of their physical properties as a function of synthesis conditions. Single crystals fibres were obtained by LFZ, while a structural orthorhombic to monoclinic phase transition was observed in samples sintered at temperature higher than 800 °C. Transmission optical spectroscopy and photoconductivity measurements allowed identifying a ∼3.2 eV bandgap energy for the H-Nb2O5 monoclinic crystalline phase. Band gap shrinkage of ∼100 meV was observed from 14 K to RT. For the orthorhombic phase (T-Nb2O5), the photoconductivity measurements evidence a higher energy bandgap. The sintered samples have shown a broad recombination luminescence band at the orange/red spectral region while no luminescence was detected from the LFZ grown fibres. A dielectric constant of ∼40 was found for the 800 °C and 1200 °C sintered pellets while that of 1000 °C reached four times that value.  相似文献   

9.
Mixed-gas CO2/C2H6 sorption and dilation in a cross-linked poly(ethylene oxide) copolymer were studied at temperatures ranging from −20 to 35 °C. The polymer was prepared by photopolymerization of a solution containing 70 wt.% poly(ethylene glycol) methyl ether acrylate (PEGMEA) and 30 wt.% poly(ethylene glycol) diacrylate (PEGDA). Four different gas mixtures (10, 25, 50 and 70 mol% CO2) were considered at operating pressures up to 21 atm. At a given temperature, polymer dilation increased with pressure and CO2 content. Compared to pure-gas values, CO2 solubility was higher in the presence of ethane, an effect whose extent increased with decreasing temperature. Ethane solubility in the polymer also increased in the presence of CO2 compared to the pure-gas value at T ≥ 25 °C. However, at T ≤ 0 °C, the presence of carbon dioxide initially reduced ethane solubility. As the fugacity of CO2 in the mixture increased and the polymer dilated, ethane solubility progressively increased, eventually surpassing the pure-gas value. The multicomponent Flory-Huggins model could describe the pure- and mixed-gas data simultaneously, provided that an empirical composition dependence was included in the interaction parameters for T < 25 °C.  相似文献   

10.
The formation of carbon nanofibers (CNFs) doped with nitrogen was investigated during decomposition of C2H4/NH3 mixtures at 450-675 °C over metal catalysts: 90Ni-Al2O3, 82Ni-8Cu-Al2O3, 65Ni-25Cu-Al2O3, 45Ni-45Cu-Al2O3, 90Fe-Al2O3, 85Fe-5Co-Al2O3, 62Fe-8Co-Al2O3, 62Fe-8Ni-Al2O3. It was found that the yield of CNFs, their structural and textural properties, as well as nitrogen content in CNFs are strongly dependent on the synthesis conditions such as: catalyst used, feed composition, temperature and duration. The 65Ni-25Cu-Al2O3 was proved to be the most efficient catalyst for the production of nitrogen-containing carbon nanofibers (N-CNFs) with nitrogen content up to 7 wt.%. Ammonia concentration in the feed equal 75 vol.%, temperature 550 °C and duration 1 h were found to be the optimum reaction parameters to reach the maximum nitrogen content in N-CNFs. TEM studies revealed that the nanofibers have a helical morphology and a “herringbone” structure composed of graphite sheets. According to the XPS data, the nitrogen incorporation in the N-CNF structure leads to the formation of two types of nitrogen coordination: pyridinic and quaternary, and their abundance depends on the reaction conditions.  相似文献   

11.
The hydrate formation of CH4+C2H4 mixture was studied experimentally in two different cases, with and without the presence of sodium dodecyl sulfate (SDS) in water. The results manifested that the presence of SDS could not only accelerate the hydrate formation process, but also increase the partition coefficient of ethylene between hydrate and vapor drastically. The partition coefficients of ethylene between hydrate and vapor for methane + ethylene + water with the presence of 500 ppm SDS in water were then systematically measured. The experimental temperature ranged from 273.15 to 278.15 K, the pressure ranged from 2.5 to 5.5 MPa, the initial gas-liquid volume ratio ranged from 95 to 240 standard volumes of gas per volume of liquid, and the mole percentage of ethylene in feed gas mixture ranged from 5.28% to 79.36%. The results demonstrated that ethylene could be enriched in hydrate phase and partition coefficients were increased with the presence of SDS in water. This conclusion is of industrial significance; it implies that it is feasible to recover ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

12.
The α-CoMoO4 oxide has been obtained by a precipitation method and investigated for the first time for electrocatalysis of the oxygen evolution reaction (oer) in alkaline medium. This method produced the pure crystalline CoMoO4 monoclinic phase with crystallite size ∼46 nm and lattice constants: a = 9.666 Å, b = 8.854 Å, c = 7.755 Å and β = 113.82°. The average particle size (based on area density) and the BET surface area of powders of the oxide were 11.58 μm and 9.4 m2 g−1, respectively. Results show that the new oxide is quite active for the oer. Values of the Tafel slope and the reaction order with respect to OH concentration are observed to be ∼60 mV and ∼1, respectively.  相似文献   

13.
The impact of side chain and midblock length on the solubility of ABA triblock copolymers of fluorooxetane-(ethylene oxide)-fluorooxetane in carbon dioxide is examined. The use of short fluorinated side chains instead of long fluorinated chains prevents issues with bioaccumulation of the degradation products of the surfactant. At 40 °C for the same degree of polymerization, increasing the number of perfluoro-units from one to four results in a non-monotonic change in the cloud point pressure; the cloud point pressure decreases as the side chain is increased from perfluoromethyl to perfluoroethyl. However, further increasing the fluorinated side chain to perfluorobutyl results in a significant increase in the cloud point. However when the temperature is increased to 60 °C, the cloud point pressure for the surfactants with perfluoroethyl and perfluorobutyl side chains is statistically similar, while the perfluoromethyloxetane based surfactant requires a substantially larger pressure to obtain comparable solubility. An increase in cloud point pressure is observed when increasing the hydrophilic ethylene oxide segment. These results illustrate that commercially available fluorooxetane-(ethylene oxide)-fluorooxetane surfactants are highly soluble in CO2.  相似文献   

14.
Polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) and the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) have been prepared and characterized by different techniques. Coordination of the IL by the polymer occurs mainly in the amorphous phase. This finding was correlated with previous theoretical investigations of a similar model for polymer electrolytes based on poly(ethylene oxide), PEO, and IL. It has been obtained ionic conductivity σ ∼ 10−3 S cm−1 for the polymer electrolyte with 35 wt% of IL at 100 °C. The same order of magnitude for σ was obtained by molecular dynamics simulation of PEO/IL. This work demonstrates consistency between experimental and theoretical results for polymer electrolytes containing ionic liquids.  相似文献   

15.
Hangzheng Chen 《Polymer》2010,51(18):4077-7736
Reverse selective membranes comprising poly(ethylene oxide) (PEO) containing copolyimides (PEO-PI) with variations of acid dianhydrides and diamines have been synthesized for hydrogen purification. The reverse selectivity of the membranes decimate the energy required for hydrogen recompression process. Factors including PEO content, PEO molecular weight, and fractional free volume (FFV) that would affect the gas transport performance have been investigated and elucidated in terms of degree of crystallinity, phase separation in the PEO domain as well as inter-penetration between the hard and soft segments. In mixed gas tests of CO2 and H2 mixtures, a highly condensable CO2 out compete H2 for the sorption sites in hard segment and diminishes H2 permeability. Thus the CO2/H2 selectivity in the mixed gas tests is much higher than that in pure gas tests. Mixed gas permeation tests at 35 °C and 2atm show that the best reverse selective membranes have a CO2 permeability of 179.3 Barrers and a CO2/H2 permselectivity of 22.7. The physical properties of PEO-PIs have also been characterized by FTIR, DSC, GPC, WAXS, AFM and tensile strain tests.  相似文献   

16.
This work presents a study of the effect of wet sulphuric acid treatment and gas-phase treatment with SO2 + O2 + H2O on the catalytic activity of a low-rank coal-based carbon for the nitric oxide reduction with ammonia. Carbons were characterized by N2 adsorption, TPD, and FTIR in order to assess how the surface chemistry and the texture of carbons change after the treatments. A great amount of oxygenated functional groups both CO2 and CO evolving ones are produced by liquid-phase sulphuric acid treatment. However, the amount of those groups after gas-phase treatment with SO2 + O2 + H2O is lower, in particular the CO2 evolving groups. The catalytic activity of carbons was examined in a fixed bed reactor at 150 °C in a gas flow containing NO, O2, N2 and NH3, the effluent concentration being monitored continuously during the reaction. The obtained results indicate that an appropriate balance between the type of oxygen functional groups and surface area available to the reactant gas are required to reach high levels of NO conversion.  相似文献   

17.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

18.
Water vapor oxidation and salt corrosion resistances of mullite-gadolinium silicate (Gd2SiO5) environmental barrier coatings (EBCs) dip coated on α-SiC substrates and sintered to 1430 °C/3 h in air were investigated. The EBC exhibited excellent adherence to the substrate during thermal cycling between 1350 °C and room temperature (RT) for 100 h in a simulated lean combustion environment (90% H2O-balance O2), [11], [13] and [15] forming ∼10 μm porous silica layer at coating-substrate interface, compared to ∼17 μm for uncoated α-SiC exposed under same conditions. The EBC did not spall after a 24 h 1200 °C exposure in Na2SO4 corrosion environment leading to further coat densification. However, after 48 h salt exposure, the EBC showed severe through-thickness cracks, and cavities and de-lamination at coating-substrate interface. The corrosion gaseous products such as CO2, CO and SO2 trapped under a low viscosity glassy (Na2x(SiO2)) liquid phase were formed due to salt vapor reaction with α-SiC substrate created these cavities.  相似文献   

19.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

20.
An anhydrous proton conductor, Sn0.95Al0.05P2O7 (SAPO), composed of polystyrene-b-poly(ethylene/propylene)-b-polystyrene (SEPS), was developed and characterized using morphological, structural, and electrochemical analyses. In the composite membrane with 20 wt% SEPS, a homogeneous distribution of SAPO particles in the matrix was obtained in the thickness range of 65-90 μm, yielding a proton conductivity of 3.4 × 10−3 S cm−1 at 200 °C, tensile strength of 4.6 MPa and an elongation at break of 711.0% at room temperature. Fuel cell tests verified that the open-circuit voltage was maintained at a constant value of approximately 1 V between 100 and 250 °C. The peak power densities achieved with unhumidified H2 and air were 77.0 mW cm−2 at 100 °C, 121.0 mW cm−2 at 150 °C, and 163.1 mW cm−2 at 225 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号